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Abstract—In this work, we consider the decoding problem
for unknown Gaussian linear channels. Important examples of
linear channels are the intersymbol interference (ISI) channel
and the diversity channel with multiple transmit and receive
antennas employing space–time codes (STC). An important
class of decoders is based on the generalized likelihood ratio test
(GLRT). Our work deals primarily with a decoding algorithm that
uniformly improves the error probability of the GLRT decoder
for these unknown linear channels. The improvement is attained
by increasing the minimal distance associated with the decoder.
This improvement is uniform, i.e., for all the possible channel
parameters, the error probability is either smaller by a factor
(that is exponential in the improved distance), or for some, may
remain the same. We also present an algorithm that improves the
average (over the channel parameters) error probability of the
GLRT decoder. We provide simulation results for both decoders.

Index Terms—Diversity channels, generalized likelihood ratio
test (GLRT), intersymbol interference (ISI), maximum likelihood
(ML).

I. INTRODUCTION

WHEN a communication channel is band limited, signal
transmission at a symbol rate that equals or exceeds the

bandwidth of the channel results in intersymbol interference
(ISI). One way to deal with ISI channels is to use an equalizer
in order to remove the effects of the channel. From the prob-
ability of error viewpoint, the maximum-likelihood (ML) de-
coder, sometimes implemented via the ML sequence estimation
(MLSE) algorithm [1], is optimal forknownISI channels. How-
ever, the best way to decode is not clear when the ISI coefficients
are unknown.

Another class of linear channels is the class of diversity chan-
nels, with several transmit and receive antennas. The channel pa-
rameters are the fading coefficients between the transmitters and
receivers. Space–time codes (STC), e.g., the codes introduced in
[2], have been shown to significantly improve the communica-
tion performance over such multiple-antenna fading channels.
In [2], as in many other STC schemes, the channel coefficients
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are assumed to be known to the decoder. But the question re-
mains as to how to decode when the channel parameters are un-
known.

A common approach in this situation, applied by many stan-
dard equalization methods, is to use a training sequence or a
pilot sequence, to enable the receiver to identify the channel in
use. Since the sequence is known at the receiver, the receiver can
estimate the channel law by studying the received symbols cor-
responding to the known input sequence. The usage of training
for diversity channels is discussed, e.g., in [3].

The training sequence approach, however, has many draw-
backs. First, there is a mismatch penalty, since the channel esti-
mate formed at the receiver is imprecise, which results in an in-
creased error rate. Secondly, there is penalty in throughput, since
the training sequence carries no information. This penalty in-
creases as the training sequence is sent more frequently or as its
length, compared with the length of the data sequence, is larger.
When the channel changes rapidly over time, using training se-
quences might be completely inadequate. An example of such a
rapidly changing environment is the underwater communication
channel [4]. In mobile wireless communications, the varying lo-
cations of the mobile transmitter and receiver with respect to the
scatterers lead to a rapidly changing channel as well. Another
example where training fails is in broadcast multipoint commu-
nication networks. In this case, the training sequence must be
sent (and received by all receivers) whenever any of the termi-
nals goes down, even if it is desired to retain only that receiver.
Furthermore, the reverse channel maybe loaded with requests
for training retransmission. For all these reasons, the training ap-
proach can be problematic and so it is desirable to find methods
that can decode without training sequences.

A possible way to deal with the problem of communication
over unknown channels is to avoid signaling that requires the
knowledge of the unknown parameters. One example is to use
differential phase shift keying (DPSK), since the differential
phase does not depend on the possibly unknown fading coef-
ficients as long as they are time invariant. Clearly, in this case a
training sequence is not necessary. An efficient differential de-
tection scheme which does not require training sequences and
has a linear complexity was developed in [5] for diversity chan-
nels. The detection scheme was developed for a simple transmit
encoding design, known as the Alamouti block coding, first
introduced in [6]. A different approach which, again, requires
no pilot sequences is the unitary space–time modulation intro-
duced in [7], where each matrix in the signal constellation is
unitary (this decoder assumes a Rayleigh stochastic model on
the channel coefficients with a known covariance matrix). If,
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however, we do not have or do not want to impose a specific
structure on the codewords or the signal set, the differential ap-
proach may not be applicable.

As noted above, the ML decoder is optimal, i.e., it leads to
minimal error probability for known channels. In the situation
considered in this work, the channel coefficients are unknown
and, furthermore, do not have a known stochastic model. A pos-
sible decision rule for unknown channels is the generalized like-
lihood ratio test (GLRT), which essentially jointly maximizes
the likelihood with respect to both channel parameters and the
data. Some properties of the GLRT have been shown, e.g., the
GLRT is asymptotically optimal in the Neyman–Pearson setting
if the class is dense enough, see [8]. In our problem of unknown
channel, if the family of possible channels consists of all discrete
memoryless channels (DMCs) with finite input and output al-
phabets, the GLRT coincides with the maximum empirical mu-
tual information (MMI) decoder. In this case, as shown in [9], if
all the codewords have the same type, then the GLRT achieves
the same error exponent as the ML decoder. However, the GLRT
may no longer be optimal in this sense if the class of channels
is a strict subset of the set of all DMCs, [10]. Furthermore, in
general, there is no claim for the optimality of the GLRT under
the error probability criterion. Indeed, our work deals primarily
with a novel decoder that uniformly improves the error prob-
ability of the GLRT decoder for linear Gaussian channels. As
we do not assume a stochastic model on the parameter space,
in order to be superior to the GLRT our new decoder improves
the performance for some channel parameters (in the parameter
space) and does not worsen the error performance for any other
possible channel parameter.

The outline of the paper is as follows. In Section II, we intro-
duce the channel models. In Section III, we discuss the GLRT
decoder for these channel models. We then briefly present, in
Section IV, a decoding technique for a simple fading channel,
described in [11] and in [12, the Appendix], that serves as the
motivation for our novel decoder. The main new result appears
in Sections V and VI, where we develop a new robust decoder
for a special (hyperplane) case and the general case, respec-
tively. This decoder is called the Uniformly improved GLRT
(ULRT). In Section VII, we suggest an additional decoder, the
energy weighted decoder (EWD), that improves the GLRT but
only on the average over the channel parameters. A summary
and discussion of further research concludes the paper.

II. THE CHANNEL MODELS

The problem of decoding one out of codewords (hy-
potheses) observed after passing through a Gaussian ISI
channel is modeled as

(1)

where are the observed data samples,
are the transmitted symbols for theth codeword, and

, are the unknown ISI coefficients and
are independent and identically distributed (i.i.d.)

samples of white Gaussian noise with variance. Note that

the length of the observation is , which is longer than the
length of the codewords which is. We can write (1) as

(2)

where

...
... (3)

...
...

. . .

...
. . .

...

. . .
...

(4)

and

... (5)

and where the matrices are assumed to be
full rank. It can be easily seen from the structure of the matrix
that is full rank unless
since the diagonal shape of the columns ensures that they are
linearly independent.

For convenience, we define the transmitted signal vectors
given by

(6)

Another linear Gaussian case is the diversity channel with
transmitting elements andreceiving antenna elements where

(7)

and where are the observed data samples at receive
antenna , are the symbols transmitted by theth
antenna for the th codeword, is the unknown fading coef-
ficient from transmit antennato receive antenna, and
are i.i.d. samples of white Gaussian noise with variance. We
can write (7) as

(8)

where

...
...

...
. . .

(9)
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...
...

...
. . .

(10)

...
...

... (11)

and,

...
...

... (12)

and where the matrices are assumed to be
full rank. In many coding methods encountered in the literature,
the matrices turned out to be full rank. For example, in [13],
each has an orthogonal structure and in [7], the columns of

are designed to be (scaled) orthonormal.
Clearly, the ISI channel is a special case of the diversity

channel with a single antenna at the receiver . In this
paper, we discuss explicitly the ISI case, but the decoders we
introduce can be directly extended to handle diversity channels
[14].

III. T HE GENERALIZED LIKELIHOOD RATIO TEST(GLRT)

Decoding with unknown channel parameters leads to a
composite hypothesis testing problem [12],[15]. In composite
hypotheses testing, there is an uncertainty in the parameters
that define the probability distribution associated with each
hypotheses , . Specifically, for each hy-
pothesis there is a family of possible probability assignments

, where is a sequence
of observations, is the unknown parameter, andis the set
of unknown parameters. Note that in our case of unknown
channel, the set of unknown parameters does not depend on the
hypothesis. There is a family of channels

(13)

and the hypotheses are the possible codewords which are
transmitted as an input to the channel.

If the channel is known, the decoding problem reduces to
simple hypothesis testing, whose optimal solution in the sense
of minimizing the error probability (assuming the codewords
are equiprobable) is given by the ML decision rule

(14)

where is the th codeword. Since ML decoding in general
leads to different rules for different channels it cannot be em-
ployed when the channel is unknown.

There are two major approaches to composite hypothesis
testing [16]. The first is Bayesian, where the unknown parame-
ters are considered as random variables with a specified prior
probability. By taking the expectation of with respect
to (w.r.t.) the unknown parameter, one obtainsa posteriori
probability distributions that are independent ofand can

be used for ML decision. The Bayesian approach can be
computationally complex due to the expectation. Furthermore,
it requires a subjective prior assumption. The second approach
is the GLRT which has a lower computational complexity, and
moreover, it does not make any assumption regarding a prior
probability. The GLRT decoder can be defined as follows:

(15)

While the GLRT is intuitively appealing as a joint channel and
data estimation scheme, it does not have a solid theoretical jus-
tification in general. For ISI channels, as shown in this paper,
the GLRT can be strictly suboptimal.

In the remainder of this section we present the GLRT
decoding rule for ISI channels. Under the ISI linear Gaussian
model previously described, the joint codeword and channel
parameter estimation reduces to a joint minimization of the
following Euclidean distance, and so the GLRT decoding rule
becomes

(16)

Since we assumed that are full rank, the least squares (LS)
solution for is

(17)

Substituting into (16) yields the following closed-form solution:

(18)

For two codewords , define the two subspaces each
of the codewords spans

(19)

The decoding regions and of , respectively, are
given by

(20)

(21)

The surface that separates the decoding regionsand (the
separating surface of the decoder) is given by

(22)

We will use these definitions in the following sections, where
we show how the GLRT can be uniformly improved.

IV. UNIFORMLY IMPROVING THEGLRT: MOTIVATION

Consider the two-codewords case, and let us analyze the
GLRT decoder performance given an ISI coefficients vector.
Define

(23)
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(24)

where are defined in (2) and is the sep-
arating surface of the GLRT decoder defined in (22). Since the
noise is white Gaussian, and as we assume that the two messages
are equiprobable, the error probability givenfor the GLRT de-
coder can be approximated by

(25)

Assume that . The exponential order of
is given by

(26)

Now, suppose we can find another decoder defined by a sep-
arating surface , with respective distances

(27)

(28)

such that

(29)

(30)

These conditions ensure that for somethe error probability of
the new decoder is improved exponentially, while for the rest it
remains at least the same; thus, this decoder improves the GLRT
uniformly.

We show now an example, originally presented in [11] and
in [12, the Appendix], for such a decoder in the simple fading
channel case. The fading channel is actually a single-parameter
ISI channel where the observed data is given by

(31)

and where is an unknown fading coefficient, and are
i.i.d. zero-mean, Gaussian random variables with variance.
Suppose we have two codewords of lengthgiven by

and . Note that any
orthogonal code of two codewords can be transformed to this
form. Since all of the coordinates of both codewords are zero
for , the problem is essentially two dimensional.

The decoding regions for the GLRT decoder appear in Fig. 1.
The GLRT projects the received signal onto the direc-
tions of the two-dimensional vectors formed by the first two co-
ordinates of and , and decides according to the smaller
between the distances of to the vertical axis and to the
horizontal axis of the coordinate system. The decoding rule de-
cides if and decides if . Thus, the
boundaries between the two decision regions are straight lines
through the origin at slopes of45 . Note that the decoding rule

Fig. 1. Signal space diagram of the GLRT decoder.

Fig. 2. Signal space diagram of the new decoder.

does not depend on the specific values ofand . The distances
of and from the boundary lines dictate the error
probability for the decoder. The distance of from
the boundary lines at slope is and the distance of

from the same lines is . The leading term of the
error probability behaves as .

Following [12, the Appendix], the decoding regions of the
new decoder appear in Fig. 2. This decoder projects the vector
formed by the first two coordinates of each in the direc-
tion of the first two coordinates of. The decoding rule decides

if and decides if .
The boundary between the two decision regions is a pair of
straight lines with slopes . For the new decoder, the dis-
tance of both and from the boundary lines
is . Thus, the error probability has exponential
order of , which is strictly better
than that of the GLRT for any, unless .
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Fig. 3. Codewords hyperplanes forN = 3,K = 2.

V. ULRT FOR A SPECIAL ISI CASE

A. Preliminaries

In this section, we analyze the special ISI case, with two code-
words and where the ISI order is . A preliminary
presentation of the ULRT for this case was given in [17], [18].

In this case, if are full rank,
in (19) represent hyperplanes that pass through the origin. The
intersection of the two hyperplanes is a subspace of dimension

. As illustrated in Fig. 3, when ,
are planes and their intersection is a line. Thus, for
we can find s.t.

(32)

The distance between the hyperplane and a vector
is

(33)

The GLRT metrics are given by according to defi-
nition. The GLRT separating surfaces are therefore two hyper-
planes given by

(34)

or equivalently

(35)

where

(36)

See illustration for , in Fig. 4.
The normal to the surface at some intersects

at and at . Fig. 5 illustrates a cross section of the
hyperplanes for .

Fig. 4. GLRT separating surface forN = 3,K = 2.

Fig. 5. Cross section forN = 3.

For full rank, we can find (unique) ISI parameters
and s.t.

and (37)

According to definitions (23) and (24)

(38)

(39)

Define

and (40)

We can find such that according to definitions (23)
and (24)

(41)

(42)

We make the following assumption on the code:

(43)

(44)

where the inequalities are strict.
Note that we could have chosen, without loss of generality,

the same assumptions with both inequality signs reversed. If we
cannot find any such that these assumptions hold, we show in
Section V-E that there is no decoder that uniformly improves the
GLRT. Now, one can easily find examples where the assump-
tions hold for some region of . For instance, define the sur-
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Fig. 6. The planesC ; C ; andS .

Fig. 7. The regionsB andB .

face
where

(45)

One can verify that is positive for some values of
. Clearly, both assumptions (43) and (44) (or both with

inequality signs reversed) hold for s.t. is pos-
itive.

Under these assumptions, we will find a decoder that uni-
formly improves (the exponential order of the error probability
of) the GLRT. Interestingly, in the example in (45), the ener-
gies of the codewords are equal, yet the above assumptions hold,
and therefore, according to the proof in Section IV-C, the GLRT
may be uniformly improved. This is contrary to the fading ex-
ample, where the GLRT is uniformly improved only when the
codewords have unequal energy.

B. Example

Before getting into the formal proof we provide an example
in order to demonstrate the general idea behind the construction
of the ULRT. Fig. 6 shows the planes , , and the separating
surfaces of the GLRT decoder for and . The
decoding regions of and are denoted as and

, respectively. In Fig. 7, we have drawn around each point
a ball of radius as defined in (24) and a

ball of radius as defined in (23) around each point
. We define the regions

(46)

(47)

Fig. 8. The new separating surface.

Fig. 9. Cross section forN = 3.

In Fig. 8, we observe that we can map the surfaceto a new
surface (not necessarily a plane) such that is outside

and outside , which together guarantee that the decoder
maintains condition (29) and is within which guarantees
that (30) is maintained.

C. Formal Construction

We now return to a rigorous formulation. The assumptions
(43) and (44) can be reformulated into

(48)

(49)

where and and finite.
Define the circle (see Fig. 9 for illustration) where

and finite

(50)

The distance function is continuous with respect to and
and given by , (where

is defined in (36)). We can, therefore, find finite and small
enough and some s.t.

(51)

for all s.t. .
Any new separating surface has to pass through some point

on the line between and . The GLRT passes through.
We look for a mapping of to another point that is between
and , for the ULRT. In other words

(52)
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Fig. 10. Illustration forN = 3 (continued).

Fig. 11. Illustration forN = 3 (continued).

for some . We first show that there exists
small enough and finite such that the new

surface will not worsen the exponential error for all possible.
That is, , the vector is strictly outside the balls of radius

around and around . Clearly,
the point , which is in the decision region (of the GLRT
decoder) of the codeword , is outside a ball of radius

around . It remains to show that is
also outside a ball of radius around .

We split into two sets. The first set contains all
. For any we define a ball of radius

around

(53)

See Fig. 10 for illustration. Since by (51), ,
the surface is strictly separated from . Therefore, is
strictly outside . It follows that for any s.t. ,
there exists a finite s.t. defined in (52) is also
strictly outside .

The second set contains all . We can, therefore,
find finite and unit vector s.t.

(54)

Let be the projection of on (see Fig. 11). The distance
of from is

(55)

The vectors and can be expressed as

(56)

(57)

where is defined in (36). It follows from (54), (56), and (57)
that

(58)

According to (54), the vector is in the direction of
and according to (56), the vectoris in the direction of

. The three vectors , , and
are not all on the same line. Therefore, and

. It follows from (58) that since is
finite is also finite.

Denote by the distance of from . Since
is finite it follows from the triangle inequality that there exists
finite s.t.

(59)

For any , we define a ball of radius around

(60)

Since , the vector is strictly outside . Thus,
for any s.t. , there exists a finite s.t.
is also strictly outside .

For the value of in (52) a possible choice would be:

(61)

Since was shown to be strictly positive and finite , the
choice for in (61) is also positive and finite. We note that
this choice for is not necessarily optimal and is not unique,
but it does guarantee that the error probability for any possible

will not be worsened as a result of the mapping.
So far was mapped to without worsening the error prob-

ability for any possible . We wish now to map an entire area
around to an area around. To that end we define now a circle
of radius

(62)

(see Fig. 12). The definition of means that any
not only maintains but also has a set around it
that also maintains the same condition. The existence of the set

follows again from the continuity of the distance function
and the fact that is a finite positive number.

Any of the vectors maintains the same conditions
as does. That is, for all there is s.t.

(63)

and, in addition, there is a circle of a finite radius
around

(64)
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Fig. 12. Illustration forN = 3 (continued).

that also maintains for all s.t.

(65)

The projection vector of a certain on is .
Using the same arguments as for, the vector can be
mapped to

(66)

for some . The parameter
is finite and will be chosen such that for any possible

, the vector will be strictly outside a ball of radius
around . In summary, then, we have

mapped an area of the separating surface without worsening
the error probability exponential order for any possible channel
vector.

Now it remains to show how the error probability for has
been modified. First, we have not worsened the error proba-
bility for since the new surface is strictly separated, by con-
struction, from balls and of radius ,

around both and

(67)

(68)

We show now that we have improved the error probability for
. Denote by the area around that was mapped to

a different area (around). Denote by the corresponding
mapped area around(see Fig. 13). The separating surface of
the ULRT is defined by . For

(69)

according to the construction (where
). For

(70)

since every is in the decision area (of the GLRT de-
coder) of . Since there is an area aroundwith finite
radius that was mapped to a surface with larger distance from

, there is a ball around with radius that is
strictly separated from the new separating surface. See Fig. 13
for illustration. As for

(71)

Fig. 13. Illustration forN = 3 (continued).

according to the construction, and the inequality is strict. There-
fore, there is a ball of radius around

that is strictly separated from the new separating
surface. Thus, the distances of both and from the new
surface is greater than and, therefore, the error proba-
bility for is improved.

Note that the procedure can be repeated for any which
maintains assumptions (43) and (44) (or with both inequality
signs reversed) and the separating surface can be modified ac-
cordingly. Thus, the error probability can be improved for addi-
tional channel coefficients as well without worsening the error
probability for any possible channel coefficient.

The decoding is performed in the following way. Assume that
the vector is received. The projection vector ofon inter-
sects at respectively. The channel co-
efficients corresponding to and are and respec-
tively. The vectors corresponding to the same channel coeffi-
cients and the other codeword are and , respectively.
The distances , can now be
calculated and conditions (43) and (44) (or both with inequality
reversed) verified. If (43) and (44) hold and assuming is
given, we can find by (52). If is on the line between and

we decode otherwise . Note that this decoding
rule depends on . It turns out, however, that the optimal
is complicated to find.

The application of the ULRT to the simple fading example
discussed in Section IV is illustrated in Fig. 14. The line
represents the GLRT and represents the decoder described
in IV. The line corresponds to the choice

(72)

where is the optimal choice for in (52). Note that in
the fading example does not depend onand the resulting
separating line is a straight line. The line corresponds to a
different choice of such that

(73)
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Fig. 14. Construction of the ULRT for the fading example.

Note that is not optimal but it does improve the GLRT. The
line , corresponding to , is tangent to the circle
of radius around , and, therefore,
does not improve the GLRT. The optimal value
can be found via a search over the parameter.

In the Appendix, we explicitly present the structure of the
ULRT for the hyperplane case. As previously mentioned, the
value of is not necessarily unique and determining its op-
timal value remains an open problem. Yet, we show in the Ap-
pendix that the optimal value of is a function of only the
direction of and is independent of its magnitude. Thus, it turns
out that the new surface consists of straight lines that emerge
from the origin and together form a surface that is not a plane.

Another way to formulate our decision rule is as follows. As-
sume that is in the decision region of codeword for
the GLRT decoder. Then if and

the decision rule is

(74)

For the simulations we used a special case of this decoder, where
and is a constant pa-

rameter of the decoder to be optimized so that the decoder would
uniformly improve the error probability. Similarly, assume that

is in the decision region of codeword for the GLRT
decoder. Then if and the
decision rule is

(75)

Again, for the simulations we used a special case of this de-
coder, where and is
a constant parameter of the decoder to be optimized so that the
decoder would uniformly improve the error probability.

Fig. 15. Comparison between the GLRT and the ULRT forN = 3,K = 2,
M = 2.

Fig. 15 compares the performance of the GLRT and the ULRT
for a specific code with two codewords. The error probability
for a certain choice of the parameter vector is given by

for the ULRT and by for the GLRT.
The graph shows the difference . We
see that for all , with
strict inequality for some and, therefore, the improve-
ment is uniform. The values of the parameters were opti-
mized by a search over a grid. The values chosen
give optimal average performance (over the channel parameter
space) while still uniformly improving the performance of the
GLRT.

D. Hyperplane Case With Codewords

Suppose we have codewords, and each of the codewords
represents a hyperplane. We assume that the codewords are
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Fig. 16. Comparison between the GLRT and the ULRT forN = 3,K = 2,
M = 5.

chosen such that all of the hyperplanes have the same intersec-
tion. The angle between hyperplaneand hyperplane is .
We can construct a vectorwith components defined by

(76)

The decoding is carried out in the following way. First, we
employ the GLRT decoder. Suppose the selected word is .
We then look in for s.t . If no such is found,
the decision remains that of the GLRT. Otherwise, for such,

, , where
denotes the probability that the decoded codeword is
while the transmitted one is and the channel coeffi-
cients vector is . Therefore, (the probability of
error when the transmitted word isand the channel coefficients
vector is ) is of the exponential order of . Now if
we carry out the procedure in the previous subsection for code-
words and we would uniformly improve the error probability,
which follows from the same arguments.

For the simulations we have used a simplified version of this
algorithm. The codewords were chosen so that the hyperplanes
they represent have a common intersection. We have calculated
the GLRT metrics for all the codewords. We then selected the
two codewords with the two minimal metrics and performed
the simplified version of the ULRT from Section V-C for these
two codewords. Thus, existing GLRT decoders could be incor-
porated into the ULRT decoders. Fig. 16 compares the perfor-
mance of the GLRT and the ULRT for a specific code with

codewords. We see that the improvement is uniform.
The parameters and in (74) and (75), respectively, were
optimized for each pair of codewords separately, by a search
over a grid.

E. Converse Theorem

We prove now that the existence of such that both
(43) and (44) hold (or both assumptions with inequality signs
reversed) is also a necessary condition for the existence of a
decoder that uniformly improves the GLRT decoder (for which
(29) and (30) hold).

Assume there is no such that both (43) and (44) hold
(or both assumptions with inequality signs reversed). Therefore,
there are now only two possible cases for each .

In case I

(77)

(78)

In case II

(79)

(80)

where and are defined in (37). Refer to case I. Any decoder
is defined by a separating surface. Any separating surface has to
pass at some point between and . Clearly, in case I, the
separating surface has to pass throughin order to maintain
(29) for both and . Therefore, we were not able to achieve
a smaller error probability for (and ). Refer now to case II.
Considering (defined in (40)), we project it on at point

, we define to be the intersection of the difference vector
with . We further define to be the unique vector

such that . Under our assumptions we have

(81)

(82)

Following the same arguments as in case I, we cannot map
to a different point and, therefore, cannot improve the error

probability of (and ) since any separating surface main-
taining (29) has to pass through. Since the above argument is
valid for any (and ) the proof is complete.

VI. ULRT FOR THEGENERAL ISI CASE

As in the hyperplane case described in Section V, the con-
struction of the ULRT for the general case is based on the GLRT
decoder. Therefore, we begin this section by investigating the
GLRT surface for the general case, in which the codewords span
subspaces given in (19). Then, we present a de-
coding procedure, similar to that presented in Section V, with an
additional assumption, made for simplicity, that the codewords
span orthogonal subspaces.

The separating surface of the GLRT, , is quadratic in the
general case and given by (22). Define the matrices

(83)

Note that is symmetric and idempotent, ,
. Any vector for or

satisfies

(84)

Therefore, the subspaces can also be expressed
as

(85)
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The separating surface is given by

(86)

Let be a point on . We analyze under what conditions
represents the distance offrom . A similar anal-

ysis can be performed for . Consider the following (non-
convex) constrained optimization problem:

(87)

The constraint assures that the solution lies on. The opti-
mization problem can be relaxed to the following:

(88)

The two problems are equivalent because the condition
defines the decision region of .

Therefore, the minimal distance of a point on to the region
is always achieved on the separating

surface, where . In what follows we state
necessary conditions on the solution of (88).

Kuhn–Tucker conditions for a nonconvex constrained opti-
mization problem

(89)

with , . Denote
i.e., the set of active constraints at of the inequality con-
straints.

Let be a local (global) minimum for (89). Assume that
for , are linearly independent, where
denotes the gradient operator (a point satisfying this condition
is called regular). Then there exists a unique Lagrange vector
satisfying

(90)

For the optimization problem in (88) . The
Kuhn–Tucker conditions yield

(91)

where the Lagrange multiplier is nonnegative.
The gradient of the surface at equals

. In other words, the direction of the normal to the
surface at coincides with the direction of

. Therefore, condition (91) is equivalent to requiring
the vector to be perpendicular to the separating surface

. In the general case, there could be several choices of per-
pendicular , each may be of different distance. The minimum
of those projections is the global minimum.

We show now that each is a regular solution of (88). For
a single constraint, the requirement of linear independence of
the Kuhn–Tucker condition reduces to the requirement that the
gradient vector is not zero. In our case, forto be regular we
have to verify that . Assume that .
Then from (91) it follows that , which can occur only in

the trivial case where is in the intersection of and . We
thus conclude that is regular.

Right-multiplying both sides of (91) by gives

(92)

since . In order for (92) to hold, and
must be linearly dependent andmust equal

(93)

where was chosen to be nonnegative according to (90). For a
certain , if and are not linearly(?) depen-
dent, then the normal to at will not intersect . Likewise,
if and are not linearly(?) dependent, then
the normal to at will not intersect . Note that for the
orthogonal case, i.e., we have
and . Thus, for the orthogonal case the
normal to at any intersects both and . Returning to
the general case, the relation betweenand is given by

(94)

and

(95)

Analogously for , if and are linearly
(?) dependent

(96)

Note that given (or ), there can be more than one solution for
. Returning to the original (equivalent) optimization problem

in (87) we can find now a sufficient and necessary condition on
for global minimum. Consider . Assume maintains
the constraint of (87)

(97)

or

(98)

and, since , it follows that

(99)

Defining , we derive the following relation
between and :

(100)

where the forth equality follows from (91) and the fifth follows
from (99).
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We have derived the following relation:

(101)

Therefore, for satisfying (91) (i.e., the vector is per-
pendicular to the separating surface), a necessary and sufficient
condition for global minimum is

(102)

where denotes semi-positive definiteness. If we further re-
quire

(103)

where denotes positive definiteness, thenis also unique.
Either condition (102) or condition (103) ensure that
represents the distance offrom .

We can define a matrix , analogous to , for
and require its positive definiteness in order to ensure
represents the distance offrom

(104)

Verifying the positive definiteness of the matrices and
may be complex, as it should be repeated for different

choices of . To reduce the complexity, the eigenvalues of
can be related to those of the matrix , which are
independent of and so can be calculated off-line. Specifically,
in order for (102) to hold, every eigenvalueof must
satisfy . Now, for every eigenvalue of

(105)

Substituting , yields

(106)

Thus,

(107)

or

(108)

It can be observed from (108) that is an eigen-
value of . Since we have required , has to satisfy

. In other words, is a global minimum iff the min-
imal eigenvalue of , satisfies

(109)

We now determine the necessary conditions for a decoder that
uniformly improves the GLRT, and present explicitly such a de-
coder. For simplicity, we assume in what follows an orthogonal
case, i.e., . It can be easily shown that in this orthog-
onal case . Therefore, condition (109) is satisfied

with equality and is always a semipositive matrix. Thus,
for any , we denote the intersection of the normal to at

with by . Kuhn–Tucker conditions assure that global
minimum for is achieved. Likewise, we denote the
intersection of the normal to at with by .

Projecting on , there may be infinite solu-
tions , such that is minimal. We denote by the set
of optimal solutions, given by

(110)

For each , a unique can be found using (96).
We denote this set by

(111)

A sufficient and necessary condition for the existence of a
decoder that improves the error probability forand does not
worsen the error probability for any other channel parameters
vector, is that any , such that , satisfies

(112)

(113)

where and were defined in (23) and (24), re-
spectively. Analogous conditions can be formed for the case

.
We describe now the decoding procedure. Assume that the

observed vector is in the region of the GLRT decoder.
The vector of may have more than one projection on. De-
note this set by

(114)

For a specific , the normal to intersects at
according to (94) and (96), respectively. Since both

and are full rank we can find unique ISI parameters
and such that and . Then,

if conditions (112) and (113) hold, and is given, a new
mapping can be found according to (52). If for some
the observation is on the line between and we decode

, otherwise .

VII. ENERGY WEIGHTED DECODER

For two hypotheses , , i.e., two codewords and
defined in (6) the GLRT decoding rule in (15) can be reformu-
lated as

(115)

A new decoder that improves the average error probability over
all the possible unknown fading coefficients is given by

(116)

where has yet to be optimized in order to minimize the average
error probability. The motivation for the new decoding rule is the
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simple fading case. Using the notations in Section IV, the GLRT
decoding rule was

(117)

The new decoding rule suggested, which reduces the exponen-
tial order of the error probability, is given by

(118)

Therefore, a possible choice for the parametercan be a func-
tion of the ratio between the energies of the codewords. In the
one-dimensional case,is given by the square root of this ratio.
For ISI channels, we selectas a certain power of the ratio of
the energies. Denote the energies of the transmitted signals
and as and , respectively. Then

(119)

(120)

and the decoding rule is given by

(121)

for some . For it is the GLRT decoder.
According to (16), for Gaussian ISI channels the decoding

rule is given by

(122)

In Fig. 17, we compare the average performance (over mes-
sages and channel coefficients) of the GLRT decoder, the ULRT,
and the energy weighted decoder (EWD) for a specific code with
two codewords. The code we used for the simulation is

(123)

The value of was optimized by a search over a grid. The op-
timal value that minimizes the average error probability is about

.
Fig. 18 compares the performance of the GLRT and the

EWD. The error probability for a certain choice of parameter
vector is given by for the EWD and by

for the GLRT. The graph shows the difference
of the error probability for each

choice of . We see that while for some

for others

Fig. 17. Average performanceN = 3,K = 2,M = 2.

Fig. 18. Comparison between the GLRT and the EWDN = 3, K = 2,
M = 2.

and, therefore, the improvement is not uniform. The comparison
between the GLRT and the ULRT in the parameter space was
already given above in Fig. 15.

VIII. SUMMARY AND FURTHER RESEARCH

We have introduced in this work two classes of alternative
new decoders for unknown linear channels that improve the
GLRT under different criteria. Most of our work is dedicated to
the ULRT that uniformly improves the error probability (actu-
ally the exponential order of the error probability) of the GLRT
decoder. For this decoder we have distinguished between two
cases: the hyperplane case and the general case, which are deter-
mined by , the number of channel parameters and, the block
length. The hyperplane case turned out to be simpler and we
found closed-form equations for implementing the algorithm.
The general case turned out to be more complicated since it in-
volved a nonconvex optimization problem. We have explicitly
presented a decoder only for the case where the subspaces as-
sociated with the codewords are orthogonal. The fact that one
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can uniformly improve the GLRT is important since much re-
search was directed to find theoretical justification to the GLRT
decoder, and to develop implementation algorithms for it. Our
result shows that the lack of theoretical justification is not coin-
cidental. Yet, from the practical viewpoint, at least for the hy-
perplane case, the complexity of the ULRT is not significantly
higher than that of the GLRT and can incorporate existing GLRT
decoders.

Decoders of the second new class improve the average (over
channel parameters) error probability. The resulting EWD ro-
tates the separating surface of the GLRT in the direction of
the less energetic codeword. Thus, while the separating surface
maintains the same characteristics of the GLRT (e.g., hyper-
plane, quadratic surface) it improves the exponential order of
the average error probability. In this respect, we note that while
in many cases codewords have the same energy, there are cases
where it is actually advantageous to use different energies. For
example, in [19] it was shown that quadrature amplitude modu-
lation (QAM), with codewords that are not necessarily equal in
energy, has superior performance over the equal energy phase
shift keying (PSK) modulation even for noncoherent reception
employing the GLRT decoder. A simplified version of the EWD
was introduced in [14], where it was implemented for a mul-
tiple-antenna system employing QAM.

For further research, one direction would be the implemen-
tation of the ULRT for practical systems. This may require an
algorithm for determining the parameterthat may involve it-
erative or recursive modifications of an initial value. For the
general case, the implementation may require an algorithm for
solving the resulting nonconvex optimization problem. Also, an
explicit analysis in the general case, without the assumption that
the codewords subspaces are orthogonal, should be completed.
For practical systems, one should also find efficient implemen-
tation for the case of large codewords.

Actually, the case of large , especially the case where
grows exponentially with the block length, i.e., for
some rate , is interesting and requires further theoretical anal-
ysis. Specifically, an interesting question is whether the ULRT
can improve the error exponent attained by the GLRT. In this
respect, it was shown [20] that GLRT decoders can achieve the
rate attainable by an optimal ML decoder, yet the GLRT expo-
nential error performance may be improved.

An additional direction for research is modifying the de-
coders to other channel models. Linear systems can, in general,
be classified into four categories: time-invariant flat fading,
time-invariant frequency selective fading, time-variant flat
fading, and time-variant frequency fading. The first category
is covered by the simple fading example, while our work here
focused mainly on the second category. A natural generalization
of the GLRT decoder to time-variant channels would modify
the estimation of the channel coefficients involved in the
algorithm. Instead of LS estimation it could involve weighted
least squares (WLS) algorithm, where the weights are chosen
to account for the changes in the channel. A new decoding
algorithm that improves the performance of this decoder can
be developed analogously to the improved decoder we have
developed in this work for time invariant channels.

Another subject for further research involves performance
bounds, and especially analysis of the error exponent achieved
by the decoders. The decoders might be analyzed according to

thecompetitive min-max criterionproposed in [12]. This crite-
rion minimizes the worst ratio between the error probability of
the proposed decoder and the error probability of the optimal
ML rule, raised to a certain power . It is interesting to
see to what extent the new decoder proposed here satisfies this
criterion.

A criterion for an optimal decision rule under channel uncer-
tainty is not well defined. A certain decoder is superior to an-
other decoder under any criterion only if it uniformly improves
the error probability. In this work, we have shown that the GLRT
is not an admissible decision rule, as it can be uniformly im-
proved. This work might be a step toward a more general theory
designed to determine whether a certain decision rule is admis-
sible or not.

The problem ofencoderdesign for unknown linear channels
can be investigated more closely in order to achieve a com-
plete view of robust communication systems for unknown chan-
nels. A general discussion of robust communication for various
classes of unknown channels can be found in [10]. Clearly, the
design of encoders for unknown channels could take into ac-
count the results here and other related results on universal de-
coding.

APPENDIX

ULRT STRUCTURE FOR THEHYPERPLANECASE

In this appendix, we will look more closely at the structure
of the decoder when in (19) represent hyper-
planes as in (32). We provide a geometrical representation of
the problem (i.e., the structure of the separating surface of the
GLRT decoder). This will be the basis for the geometrical struc-
ture of the ULRT.

Assume that in (35) is a unit vector. The distances
and defined in (23) and (24), respectively, are given by

(124)

Denote by the intersection of and

(125)

which is a subspace of dimension . From (32),
(35), and (36) it follows that

(126)

Consider the hyperplane (the following procedure is ap-
plicable to as well). The intersection of with is
and given by

(127)

See illustration for in Fig. 19.
Observe that in the parameter space (of dimension) is

a hyperplane (of dimension ). The hyperplane divides
into two regions

(128)

(129)

We can also construct the -dimensional hyperplane
defined by

(130)



EREZ AND FEDER: GENERALIZED LIKELIHOOD RATIO TEST FOR UNKNOWN LINEAR GAUSSIAN CHANNELS 933

Fig. 19. Illustration forN = 3,K = 2.

Fig. 20. Illustration forN = 3,K = 2 (continued).

which divides into and (defined analogously to
and ). See Fig. 20 for illustration. The hyperplane repre-
sents all the points such that ( ,
see definition in (24)). The intersection of and is a sub-
space given by

(131)
which is of dimension .

Construct the -dimensional hyperplanes and de-
fined by

(132)

(133)

It follows from (124) that for any or ,
.

Define the set

(134)

which is of dimension . For any ,
and . Therefore,

(135)

or

(136)

Fig. 21. Illustration forN = 3,K = 2 (continued).

Fig. 22. Illustration forN = 3,K = 2 (continued).

The hyperplanes divide into eight regions
(see Fig. 21) . This hyperplane passes in
the regions . The hyperplane divides
into two regions: (where ) and
(where ). Clearly, and

. This way the regions and were de-
termined in Fig. 22. Similarly, and were determined.

We need to determine for each of these eight regions whether
, or , . Re-

gion , for example, is given by . There-
fore, and it follows that ,

. The same procedure can be carried out for the rest
of the regions. We conclude that is divided into four regions
where in two of them and in the other two

. The hyperplanes , divide into these
four regions; see Fig. 22.

We project both and on the GLRT separating surface
. The projections are the hyperplanes and

that divide into four regions. The subspaces and are
both of dimension and, therefore, are hyperplanes in
( -dimensional). Their intersection is (see (134)). This is so
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Fig. 23. Illustration forN = 3,K = 2 (continued).

since, as we recall, and, therefore, . Thus, the
projection of on is itself and since we
conclude that . The hyperplanes and can
intersect at most on a -dimensional subspace and therefore,

(137)

See illustration for in Fig. 23.
At any point we can construct a normal to . The

normal intersects at for some and at for
some . Consider region (or ) in Fig. 23. If we construct
a normal to on any point the normal intersects

at for some where . Consider
region (or ). If we construct a normal to on any point

, the normal intersects at for some where
.

The entire procedure above is repeated for. We construct
on the hyperplanes and . We project also

and on ; see illustration for in
Fig. 24. The regions formed on are denoted by . We as-
sumed that , , , and do not overlap, since otherwise
the GLRT cannot be uniformly improved as shown by the con-
verse theorem.

Some regions (in our example and ) maintain (43) and
(44) and some regions (in our example and ) maintain
these assumptions with both inequality signs reversed. Define
a region and of finite angle from the
boundaries of ; see Fig. 25 for illustration. Similarly, define

. We will show that any point can be
mapped to a new pointin the new separating surface according
to

(138)

where and the projection of on is . Simi-
larly, any point can be mapped to a new pointin
the new separating surface according to

(139)

such that the new separating surface maintains (29) and (30)
and, therefore, uniformly improves the GLRT decoder. The even
regions of the new separating surface will remain the same as for

Fig. 24. Illustration forN = 3,K = 2 (continued).

Fig. 25. Illustration forN = 3,K = 2 (continued).

the GLRT. We will also show that does not depend on the
magnitude of , but only on its direction. Thus, vectors on
with the same direction (linearly dependent) have the same.

We construct the ULRT based on Section V. Construct re-
gions such that is the projection of on .
Similarly, construct . Consider, for example, where

, . In region , since
, is strictly outside a ball of radius

around (see (53)). Therefore, is also strictly out-
side and we can find so that is also strictly outside

.
As for the other regions of (in our example )

we need to show that we can find so that is strictly out-
side of radius to around (see (60)). Denote
by the projection of some on (see Fig. 26). Denote
by the angle between and , .
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Fig. 26. Illustration forN = 3,K = 2 (continued).

According to construction, . The distance between
and is . The distance between and is

(cosine law). It follows that if and are finite then so is
. Denote by the distance between and . Ac-

cording to Pythagoras

(140)

Therefore, is strictly outside the ball of radius
around (see (60)) and we can find so that is also out-
side . In other words, according to construction, we know
that the union of balls of radius around

is not tangent to . Therefore, for any
we can find a suitable s.t. is outside the above union of
balls.

Define a subset of , denoted by , where
if the projection of on is within . We want

to show that error probability will be improved for anys.t.
. Since for any in this region,

the union of balls of radius around
is tangent to . Therefore, the mapping of the region (in
the direction of ) will improve the error probability for this
region.

We turn now to show that the required value of depends
only on the direction of and not on its magnitude. Suppose that

was mapped to according to (138) (in some of the regions
we know that we can find such). We conclude that maintains

(141)

We want to show that the vector can be mapped to .
See Fig. 27 for a cross section for the case and .
Substitute instead of in (141)

(142)

Fig. 27. Illustration forN = 3,K = 2 (continued).

Multiplying both sides by results in

(143)

which is what we wanted to show. As a result, the relative error
probability improvement does not deteriorate for channel pa-
rameters with larger magnitude.
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