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Abstract—In this work, we consider the decoding problem are assumed to be known to the decoder. But the question re-
for unknown Gaussian linear channels. Important examples of mains as to how to decode when the channel parameters are un-
linear channels are the intersymbol interference (ISI) channel known

and the diversity channel with multiple transmit and receive A h in this situati lied b t
antennas employing space—time codes (STC). An important common approach in this situation, applied by many stan-

class of decoders is based on the generalized likelihood ratio testdard equalization methods, is to use a training sequence or a
(GLRT). Our work deals primarily with a decoding algorithmthat  pilot sequence, to enable the receiver to identify the channel in
uniformly improves the error probability of the GLRT decoder  yse. Since the sequence is known at the receiver, the receiver can
for these unknown linear channels. The improvement is attained estimate the channel law by studying the received symbols cor-

by increasing the minimal distance associated with the decoder. . . .
This improvement is uniform, i.e., for all the possible channel responding to the known input sequence. The usage of training

parameters, the error probability is either smaller by a factor ~for diversity channels is discussed, e.g., in [3].
(that is exponential in the improved distance), or for some, may  The training sequence approach, however, has many draw-
remain the same. We also present an algorithm that improves the phacks. First, there is a mismatch penalty, since the channel esti-
average (over the channel parameters) error probability of the 5t formed at the receiver is imprecise, which results in an in-
GLRT decoder. We provide simulation results for both decoders. . . .
creased error rate. Secondly, there is penalty in throughput, since
Index Terms—biversity channels, generalized likelihood ratio the training sequence carries no information. This penalty in-
test (GLRT), intersymbol interference (ISI), maximum likelihood  ¢re45es as the training sequence is sent more frequently or as its
(ML). length, compared with the length of the data sequence, is larger.
When the channel changes rapidly over time, using training se-
I. INTRODUCTION quences might be completely inadequate. An example of such a
dly changing environment is the underwater communication
nnel [4]. In mobile wireless communications, the varying lo-
bandwidth of the channel results in intersymbol interferen(f‘:@tions ofthe mobiletrapsmitter ar!d receiver withrespect to the
(ISI). One way to deal with ISI channels is to use an equalizti,?atterers lead to grapldly ghgngmg channel as V\./e"' Another
in order to remove the effects of the channel. From the pro%?—(ample where training _fa|ls IS broad(_:a_st multipoint commu-
ability of error viewpoint, the maximume-likelihood (ML) de- hication netwo_rks. In this case, the training sequence must b.e
coder, sometimes implemented via the ML sequence estimat t (and received by gl! r_ecelvgrs) whene_ver any of the tgrml—
nals goes down, even if it is desired to retain only that receiver.

(MLSE) algorithm [1], is optimal foknownlSI channels. How- h h h | be loaded with
ever, the best way to decode is not clearwhentheISIcoefficietEf':l’rt ?rmore’t € reverse channet maybe loade wit 'rgquests
for training retransmission. For all these reasons, the training ap-

are unknown. . L : ;
Another class of linear channels is the class of diversity chaj.0ach can be problematic and so itis desirable to find methods
can decode without training sequences.

nels, with several transmit and receive antennas. The channeItB t ol to deal with th bl ¢ icati
rameters are the fading coefficients between the transmitters an possible way to deal wi € problem of communication
r unknown channels is to avoid signaling that requires the

receivers. Space—time codes (STC), e.g., the codes introducedif led fth K ; o le is ¢
[2], have been shown to significantly improve the communic nowledge of the unknown parameters. Une examplé IS to use

tion performance over such multiple-antenna fading channe ffferential phase shift keying (DPSK), since the difterential

In [2], as in many other STC schemes, the channel coefficie iase does not depend on the possibly unknown fading coef-
' ' iclents as long as they are time invariant. Clearly, in this case a

training sequence is not necessary. An efficient differential de-
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however, we do not have or do not want to impose a speciftie length of the observation i%, which is longer than the
structure on the codewords or the signal set, the differential dpngth of the codewords which B. We can write (1) as
proach may not be applicable.

As noted above, the ML decoder is optimal, i.e., it leads to Hp:y = Ximh + 2 )
minimal error probability for known channels. In the situation here
considered in this work, the channel coefficients are unknown

and, furthermore, do not have a known stochastic model. A pos- Yo 20

sible decision rule for unknown channels is the generalized like- y = : y— : 3)
lihood ratio test (GLRT), which essentially jointly maximizes : ’ :

the likelihood with respect to both channel parameters and the L yn—1 ZN_1

data. Some properties of the GLRT have been shown, e.g., the - (m) -

GLRT is asymptotically optimal in the Neyman—Pearson setting To 0 0

if the class is dense enough, see [8]. In our problem of unknown 2™ Moo

channel, if the family of possible channels consists of all discrete

memoryless channels (DMCs) with finite input and output al- : : wg’”>

phabets, the GLRT coincides with the maximum empirical mu- X = _ _ _ (4)
tual information (MMI) decoder. In this case, as shown in [9], if wﬁé’?l : ' :

all the codewords have the same type, then the GLRT achieves

the same error exponent as the ML decoder. However, the GLRT 0 xﬁi’i)l :

may no longer be optimal in this sense if the class of channels 0 0 R CO)

is a strict subset of the set of all DMCs, [10]. Furthermore, ignd ) Lt

general, there is no claim for the optimality of the GLRT under " ho

the error probability criterion. Indeed, our work deals primarily

with a novel decoder that uniformly improves the error prob- h = : (5)
ability of the GLRT decoder for linear Gaussian channels. As Iy

we do not assume a stochastic model on the parameter space,
in order to be superior to the GLRT our new decoder improvesid where the matriceX,,, m = 1--- M are assumed to be
the performance for some channel parameters (in the paraméigiirank. It can be easily seen from the structure of the matrix

space) and does not worsen the error performance for any ofiteit X,,, is full rank unIess;;f)m) = x§m> A wg”_)l =0
possible channel parameter. since the diagonal shape of the columns ensures that they are

The outline of the paper is as follows. In Section Il, we introtinearly independent.
duce the channel models. In Section I, we discuss the GLRTFor convenience, we define the transmitted signal vectors
decoder for these channel models. We then briefly presentgiven by
Section 1V, a decoding technique for a simple fading channel,
described in [11] and in [12, the Appendix], that serves as the 20m) — [wgm)./ Lg:’m)1:|T. ©)
motivation for our novel decoder. The main new result appears
in Sections V and VI, where we develop a new robust decoderanother linear Gaussian case is the diversity channel fith

for a special (hyperplane) case and the general case, respefrsmitting elements anéireceiving antenna elements where
tively. This decoder is called the Uniformly improved GLRT

(ULRT). In Section VII, we suggest an additional decoder, the

energy weighted decoder (EWD), that improves the GLRT b{itm ¥n.j Z i, Jx )+ 2,
only on the average over the channel parameters. A summary B .
and discussion of further research concludes the paper. n=0,1..., N -, m=1...,M j=1..,J ()

and where{y,,, ]}n'_o are the observed data samples at receive
antennaj, {x(m)} ! are the symbols transmitted by thti

The problem of decoding one out dff codewords (hy- antenna for thenth codewordaw is the unknown fading coef-
potheses) observed after passing through a Gaussian fl§ent from transmit antennato receive antenng and{z, ;}

Il. THE CHANNEL MODELS

channel is modeled as are i.i.d. samples of white Gaussian noise with variartcé/Ve
K1 can write (7) as
! ; i Hon: Y = Xppa + 7 8)
n=01,....N—-1, m=1,..., M (1) where
where {4, }Y_! are the observed data samplés(m)} Py L m)
are the transmitted symbols for theth codeword, andv = 0.1 0.L
P+ K — 1, {h;}I;! are the unknown IS coefficients and X, = : - : 9)
{za} N2 are mdependent and identically distributed (i.i.d.) ' ' '
samples of white Gaussian noise with variance Note that AP LN



EREZ AND FEDER: GENERALIZED LIKELIHOOD RATIO TEST FOR UNKNOWN LINEAR GAUSSIAN CHANNELS 921

(@11 - g be used for ML decision. The Bayesian approach can be
. ) . computationally complex due to the expectation. Furthermore,
*= : L 10) requires a subjective prior assumption. The second approach
Loz s 0 any is the GLRT which has a lower computational complexity, and
7 ’ . moreover, it does not make any assumption regarding a prior
Yo,1 0 Yo,J probability. The GLRT decoder can be defined as follows:
Y= : : (11) bcLrT(Y) =i Sup pe (y ’x(i)>: max Sup pe (y ’x(j)) .
IE) 1<j<M geo
LYN-1,1 **° YN-1,J ] (15)
and,
[ 2z01 - zo,g ] While the GLRT is intuitively appealing as a joint channel and
) ) data estimation scheme, it does not have a solid theoretical jus-
Z = : : (12) tification in general. For ISI channels, as shown in this paper,
lZv_11 - ZN-1,7 ] the GLRT can be strictly suboptimal.
i In the remainder of this section we present the GLRT
and where the matrices,,, m = 1, ..., M are assumed to be

decoding rule for ISI channels. Under the ISI linear Gaussian

full rank._ln many coding methods encountered in the Ii_teraturﬁ.,odd previously described, the joint codeword and channel
the matricesY,, turned out to be full rank. For example, in [13],, 5 ameter estimation reduces to a joint minimization of the

eachX,, has an orthogonal structure and in [7], the columns gf},qing Euclidean distance, and so the GLRT decoding rule
X,, are designed to be (scaled) orthonormal.

X . , becomes
Clearly, the ISI channel is a special case of the diversity
channel with a single antenna at the recefuér= 1). In this 7 = arg min {min ly — th||2} ) (16)
paper, we discuss explicitly the ISI case, but the decoders we m h
introduce can be directly extended to handle diversity channelce we assumed that,, are full rank, the least squares (LS)
[14]. solution forh is
l1l. THE GENERALIZED LIKELIHOOD RATIO TEST(GLRT) hin = (X5 Xn) " X0y 17)

Decoding with unknown channel parameters leads to Substituting into (16) yields the following closed-form solution:
composite hypothesis testing problem [12],[15]. In composite
hypotheses testing, there is an uncertainty in the parameters
that define the ‘pI’ObabIhty dlstrlbutlon_ _assomated with each For two codeword¢M = 2), define the two subspaces each
hypothesesH;, « = 1, ..., M. Specifically, for each hy- f

) . . . . . the codewords spans
pothesis there is a family of possible probability assgnmen?s
{pe(y|H;), 6 € A}, wherey = (yo, ..., yn) iS @ Sequence Cpp = {Tm: Ty = X;uh, h € RE}. (19)
of observationsd is the unknown parameter, aidis the set

of unknown parameters. Note that in our case of unknowre decoding regions, andD, of m = 1, 2, respectively, are
channel, the set of unknown parameters does not depend ond&" by

M = arg max {yTXm,(XZXm,)_lX,Zy} . (18)

hypothesis. There is a family of channels Dy = {w: T (X1 (XTX,) " XT

F = {pe(ylz), 6 € O} (13) — X5(X3 X2) 71 X3 v > 0} (20)
and the hypotheses are tli¢ possible codewords which are Dy ={v: " (X (X{ X))~ XT
transmitted as an input to the channel. - Xo(XTX5) ' XTw < 0} (21)

If the channel is known, the decoding problem reduces to _
simple hypothesis testing, whose optimal solution in the senbe surface that separates the decoding reginnandD; (the
of minimizing the error probability (assuming the codewordgeparating surface of the decoder) is given by

are equiprobable) is given by the ML decision rule _ _
quip ) Is given by S = {v: 0T (X1 (XT X)) XT — X5(XT X5) "' X )v = 0}

— @) = (@)
W) =i e po (y]z0) = max ps (y[a) (19) (22)

wherez(® is theith codeword. Since ML decoding in general We will use these definitions in the following sections, where

leads to different rules for different channels it cannot be er\r’1v-e show how the GLRT can be uniformly improved.

ployed when the channel is unknown.

There are two major approaches to composite hypothesis
testing [16]. The first is Bayesian, where the unknown parame-Consider the two-codewords case, and let us analyze the
ters are considered as random variables with a specified pr@tRT decoder performance given an ISI coefficients vehtor
probability. By taking the expectation of (y| H;) with respect Define
to (w.r.t.) the unknown parametér one obtainsa posteriori
probability distributions that are independent éfand can

IV. UNIFORMLY IMPROVING THE GLRT: MOTIVATION

dy (k) = min {[|X1h —vll} (23)
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dy (h) = min {||Xoh —vfl} (24)

whereh, X,,(m = 1, 2) are defined in (2) and¢ is the sep-
arating surface of the GLRT decoder defined in (22). Since the

\\\\ x(2)=(0,b)

noise is white Gaussian, and as we assume that the two messages .
are equiprobable, the error probability giviefor the GLRT de- IR=(0.10) v s ¥=00¥)
coder can be approximated by i / ]\ly,l

1 G 1 G hx®=(ha,0) xV=(a,0

PS(h)~ = Q (dl—(h)> +oQ (‘i?—(h)> (25) -

2 o 2 o
Assume thatl{’ (h) < dS (h). The exponential order a?< (h)
is given by

af (h)?
PE(h) ~ e 27 . (26)

Now, suppose we can find another decoder defined by a s%p- L Sianal g fthe GLRT decod
arating surfaces”™y, with respective distances 9% >lgnal space diagram ot the ecoder

dy'(h) = min {|[X1h —vfl} (27)
4 (h) = i {12k~ o]} (28)
such that . *D=(0,b) -
Rxowyn ) :
min {d}(h)} > min {d5(h)}, VheR" (29) B 0K -
m=h ] m=n /,xy?(yovy,) lay, Wiyl
Jh: nliln2{df)1(h)} > Hiiln2 {dS (h)}, he RE.  (30) anp=bra [

\“\\ hxW=(ha,0) xV=(a,0

These conditions ensure that for somtie error probability of

the new decoder is improved exponentially, while for the rest it
remains at least the same; thus, this decoder improves the GLRT
uniformly.

We show now an example, originally presented in [11] and
in [12, the Appendix], for such a decoder in the simple fading
channel case. The fading channel is actually a single-parameter
ISI channel where the observed data is given by

Fig. 2. Signal space diagram of the new decoder.

Yn = Wy + 2p, n=0,..., N-1 (32)
does not depend on the specific valuea ahdb. The distances

and wheré: is an unknown fading coefficient, arfd,, } Y-} are  of h-(a, 0) andh-(0, b) from the boundary lines dictate the error
i.i.d. zero-mean, Gaussian random variables with variarice probability for the decoder. The distande of & - (a, 0) from
Suppose we have two codewords of lengtrgiven byz") =  the boundary lines at slopel is ha//2 and the distancé, of
(a,0,0,...,0) andz® = (0,b,0,...,0). Note that any h- (0, b) from the same lines isb/+/2. The leading term of the
orthogonal code of two codewords can be transformed to tiigor probability behaves asp{—h? min{a?, v*}/(40?)}.
form. Since all of the coordinates of both codewords are zeroFollowing [12, the Appendix], the decoding regions of the
forn > 1, the problem is essentially two dimensional. new decoder appear in Fig. 2. This decoder projects the vector

The decoding regions for the GLRT decoder appear in Fig.fbrmed by the first two coordinates of eagh™ in the direc-
The GLRT projects the received sigrigh, 1) onto the direc- tion of the first two coordinates a@f. The decoding rule decides
tions of the two-dimensional vectors formed by the first two cae™) if |yo/a| > |y1/b| and decides® if |yo/a| < |y1/b|.
ordinates ofe(*) andz(?, and decides according to the smalleThe boundary between the two decision regions is a pair of
between the distances @fy, y1) to the vertical axis and to the straight lines with slopeg-b/a. For the new decoder, the dis-
horizontal axis of the coordinate system. The decoding rule dence of both - (a, 0) andh - (0, b) from the boundary lines
cidese™) if |yo| > |y1| and decides® if |yo| < |y1|. Thus, the is hab/+/a% + b2. Thus, the error probability has exponential
boundaries between the two decision regions are straight lireder ofexp{—h2a?b?/[20%(a® + b?)]}, which is strictly better
through the origin at slopes &f45°. Note that the decoding rule than that of the GLRT for an¥, unlessa = b.
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Fig. 3. Codewords hyperplanes faf = 3, k' = 2.

Fig. 4. GLRT separating surface fof = 3, ' = 2.
V. ULRT FOR A SPECIAL ISI CASE

b G

A. Preliminaries

In this section, we analyze the special ISI case, with two code-

a,(hy)
words and where the ISl orderi§ = N — 1. A preliminary

presentation of the ULRT for this case was given in [17], [18]. s¢
In this case, ifX,,(m = 1, 2) are full rank,C,,,(m = 1, 2)

in (19) represent hyperplanes that pass through the origin. The

intersection of the two hyperplanes is a subspace of dimension c

N -2 = K—1.Aslillustrated in Fig. 3, whetV = 3,C,,, m =
1, 2 are planes and their intersection is a line. Thusfioe

1, 2 we can findp(™ e RN sit.

Cn = {z e RN pTg =0, pi™ € %N}.

Fig. 5. Cross section fav = 3.

For X, X, full rank, we can find (unique) ISI parametdrs

(32) andh, s.t.

The distance between the hyperplaig and a vectoy € RY

aV = X;hy and P = Xyh,. (37)

is According to definitions (23) and (24)
G 1
g7p| a5 (hy) = [ — o (38)
d(y: Cm) = || (m)H (33) . @
P dS (hy) = Hb - vH : (39)
The GLRT metrics are given by(y, C,,) according to defi- pefine
nition. The GLRT separating surfaces are therefore two hyper-
planes given by a® = Xoh; and b = X, hs. (40)

We can findv;, v € S such that according to definitions (23)

T
e (2)
=1 () ooy e O
dS (hy) = Ha<2> - v2H (41)
or equivalently dS (hy) = Hb(l) - v1H ) (42)
S% = {v: pTv = 0} (35) We make the following assumption on the code:

df (h1) > dg (ha) (43)

where o G
dy’(h2) > d3 (hg) (44)

p i p? (36) where the inequalities are strict.

See illustration forvV = 3, K = 2 in Fig. 4.

The normal to the surface at somee S€ intersectsC;
ata® andC, at b2, Fig. 5 illustrates a cross section of theGLRT. Now, one can easily find examples where the assump-

hyperplanes folv = 3.

Note that we could have chosen, without loss of generality,
the same assumptions with both inequality signs reversed. If we
cannot find anw such that these assumptions hold, we show in
Section V-E that there is no decoder that uniformly improves the

tions hold for some region o6“. For instance, define the sur-
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e

Fig. 8. The new separating surface.

dS,(h) | % hy)

Y v SG
dS,(h,) 1
a6 (h;)

v

Fig. 7. The regiond3; andB-.

face Su(ha, he) = (df (k1) — dS(h1)) (dS(he) — dS (h2))

where Fig. 9. Cross section faV = 3.
1 0 0.7 0 .
X, =11 1], Xy=|123 07 |. (45) In Fig. 8, we observe that we can map the surfd€eto a new
0 1 ’ 0 1.93 surfaceS™ (not necessarily a plane) such th#’ is outside

B, and outsidg7», which together guarantee that the decoder
One can verify thatS, (h1, hz) is positive for some values of maintains condition (29) and is withiBi, \ G, which guarantees
hy, hy. Clearly, both assumptions (43) and (44) (or both witthat (30) is maintained.
inequality signs reversed) hold fbg, hs s.t.S,(h1, hs) is pos-
itive. C. Formal Construction

Under these assumptions, we will find a decoder that uni-\e now return to a rigorous formulation. The assumptions
formly improves (the exponential order of the error probability43) and (44) can be reformulated into
of) the GLRT. Interestingly, in the example in (45), the ener-
gies of the codewords are equal, yet the above assumptions hold, df (k) = d5 (h1) + a(ha) (48)
and therefore, according to the proof in Section IV-C, the GLRT G e
may be uniformly improved. This is contrary to the fading ex- 41 (he) = dy (he) + ((he) (49)
ample, where the GLRT is uniformly improved only when thevherea(hy) > 0 and3(hg) > 0 and finite.
codewords have unequal energy. Define the circle’s, (see Fig. 9 forillustration) whe® > 0
and finite

- . —a®
Before getting into the formal proof we provide an example Co, = {th' Xih=a"" 4, |irl] < 51} cCi (50)
in order to demonstrate the general idea behind the constructioRe gistance function is continuous with respeckich and
of the ULRT. Fig. 6 shows the plan€s, >, and the separating x,j, and given bydC (k) = |[pT X,hl/||p||, m = 1, 2 (where

surfaces of the GLRT decodsf for K = 2 andN = 3. The p is defined in (36)). We can, therefore, find finite and small
decoding regions ofx = 1 andm = 2 are denoted a&; and enough and some(h) > 0 s.t.

G-, respectively. In Fig. 7, we have drawn around each point

X1h € C; aballB;(h) of radiusd§ (h) as defined in (24) and a df(h) = d5'(h) + a(h),  a(h)>0 (51)
VA 2\ .

ball By (h) of radiusd{ (h) as defined in (23) around each pPoint kst Xih € Cs,.

Xoh € Cy. We define the regions Any new separating surface has to pass through some point
Bi= |J Bih (46) onthe line between() andb®. The GLRT passes through
X, heCy We look for a mapping ob to another point that is betweem
anda("), for the ULRT. In other words
By= |J Ba(h). (47)

XoheCs u = e(v)a + (1~ e(v))v (52)

B. Example
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The vectora andv’ can be expressed as

(T
—_q» _2 P

v=a 56

o7p P (56)

(X1h)"p »
p'p

wherep is defined in (36). It follows from (54), (56), and (57)

that

v :th — (57)

T
||v—v’||:t<n—#p). (58)
b® C p'p
According to (54), the vecton is in the direction ofX1h —
Fig. 10. lllustration forN = 3 (continued). a® and according to (56), the vectpris in the direction of
a® — v. The three vectoraV € ¢y, X;h € Cy, andw ¢
C C, are not all on the same line. Therefore,# p/||p|| and
B, (h) a® ! n — (nTp)/(pTp)p # 0. It follows from (58) that since is
finite ||v — v’|| > 0 is also finite.
Denote byd’ the distance of 1 h fromw. Since|lv—v'|| > 0
is finite it follows from the triangle inequality that there exists
finite a(h) > 0 s.t.

SG
d' = d$ (h) + a(h). (59)
For anyXh ¢ Cs,, we define a ball of radiug{ (h) around
X1h
b@ C G
2 Bi(h) = {r: | X1h —r|| < d7 (h)}. (60)
Fig. 11. lllustration forN = 3 (continued). Sinced’ > d§(h), the vectow is strictly outside3; (h). Thus,

foranyh s.t. X1h ¢ Cs,, there exists a finite(v, h) > 0 s.t.u
is also strictly outsidés; (h).

for some0 < ¢(v) < 1. We first show that there exists For the value of(v) in (52) a possible choice would be:

0 < e(v) < 1 small enough and finite such that the new
surface will not worsen the exponential error for all possihle €(v) = min €(v, h). (61)
That is,V h, the vectoru is strictly outside the balls of radius h

min{d§ (h), d§(h)} around X;h and aroundX,h. Clearly, Sincec(v, h)was shown to be strictly positive and finité,, the

the pointu, which is in the decision region (of the GLRTchoice fore(v) in (61) is also positive and finite. We note that
decoder) of the codeworgh = 1, is outside a ball of radius this choice for(v) is not necessarily optimal and is not unique,
min{d{ (h), d§ (h)} aroundX,h. It remains to show that is but it does guarantee that the error probability for any possible
also outside a ball of radiusin{d$ (h), d$'(h)} aroundX;h. h will not be worsened as a result of the mapping.

We split C; into two sets. The first set contains &lhh € So farv was mapped ta without worsening the error prob-
Cs,. For anyXh € Cs, we define a ball of radiug/S'(h) ability for any possibléh. We wish now to map an entire area
aroundXh aroundv to an area around. To that end we define now a circle

. of radiusé’ < 6;

By(h) = {r: | X1k — 7| < dS(h)}. (53)

1( ) { || 1 “ 2( )} C&I _ {th/: thl _ a(l) + 7, ||r|| < 6/} C 061 (62)
See Fig. 10 for illustration. Since by (515 (h) < d$(h), . o ,

the surfaceS€ is strictly separated from, (h). Thereforep is  (S€e Fig. 12). The definition af;: means thatang,h' € Ci

strictly outsideB3; (h). It follows that for anyh s.t. X h € C5,, NOtonly maintaing/’ (k') > d§'(h') butalso has a set around it
there exists a finite(v, h) > 0 s.t.u defined in (52) is also that also maintains the same condition. The existence of the set

strictly outsideB, (h). Cs follows again from the continuity of the distance function
The second set contains &l h ¢ Cs,. We can, therefore, and the fact thad(h; ) |s,a finite po_smv_e number. N
find finite ¢ > 0 and unit vectom s.t. Any of the vectorsX1h' € Css maintains the same conditions
asXhy does. Thatis, for alk k' € Cs thereisa(h’) > 0s.t.
—a®
X,h=aV +tn. (54) dS(h) = dS (k') + a(h)) (63)
Letw’ be the projection ok h on S (see Fig. 11). The distanceang, in addition, there is a circle of a finite raditigh’) < &
of X1h from S is aroundXh’'

dS(h) = | X1h— | (55)  Csmy = {X1h: X1h = X1h +r, ||r]| < 6(h')} C Cy (64)
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RO C

Fig. 12. lllustration forN = 3 (continued).

that also maintains for alt s.t. X1h € Cs)
dS(h) = dS (k) + a(h) a(h) > 0. (65)

The projection vector of a certaiXi; A’ € Cs onS% iSv(h').
Using the same arguments as far, the vectors(h') can be according to the construction, and the inequality is strict. There-
mapped tau(h’) fc?rga, there is a ball of radiudS’ (hy) < R, < d§(hy) around
no_ ! ! _ ’ ! b'Y) = X, h, that is strictly separated from the new separating
ulh) = cwBDXuh + (1 = clwB))o(k)  (66) surface. Thus, the distances of béth’ andd® from the new
for some0 < e(v(h')) < 1. The parameted < e(v(h')) < 1 surface is greater thatf (hy) and, therefore, the error proba-
is finite and will be chosen such that for any possiblec bpility for hy is improved.
RK, the vectoru(h’) will be strictly outside a ball of radius  Note that the procedure can be repeated fonagyS“ which
min{d{’(h), d§ (h)} aroundX;h. In summary, then, we have maintains assumptions (43) and (44) (or with both inequality
mapped an area of the separating surface without worsengigns reversed) and the separating surface can be modified ac-
the error probability exponential order for any possible channgbrdingly. Thus, the error probability can be improved for addi-
vector. tional channel coefficients as well without worsening the error
Now it remains to show how the error probability s has probability for any possible channel coefficient.
been modified. First, we have not worsened the error proba-The decoding is performed in the following way. Assume that
bility for hs since the new surface is strictly separated, by cothe vectory is received. The projection vector gpbn S€ inter-
struction, from balls3; (he) andB, (hy) of radiusmin{d{ (hs), sectsS¢, Cy, Cy atv, a®, p@ respectively. The channel co-
dS (ha)} = dS (h2) around both® = X,he andb™ = X he  efficients corresponding to™) andb(® areh, andhs respec-

?

Fig. 13. lllustration forN' = 3 (continued).

Bi(ho) = {1 | X ho — 1|l < dS(h 67 tively. The vectors corresponding to the same channel coeffi-
1(he) = {r: [ Xuhe —r]| 2 (h2)} 7 cients and the other codeword ar® andb™, respectively.
Ba(ha) = {r: || Xoha — r|| < d5 (ha)}. (68) The distancesi§ (hy), d{ (hs), dS (h1), dS (h2) can now be

. ... . calculated and conditions (43) and (44) (or both with inequality
We show now that we have improved the error probability for e Lo
hs. Denote byS" C SC the area around that was mapped to reversed) verified. If (43) and (44) hold and assumifg) is

. . . . (1)
a different area (around). Denote bySY the corresponding given, we can find: by (52). Ify is on the line betweea' and

mapped area around(see Fig. 13). The separating surface of we decode = 1 otherwiser = 2. Note that this d(_acodmg
the ULRT is defined by.SS \ §V) U SU. For §¢ \ §V rule depends oa(v). It turns out, however, that the optima)

is complicated to find.

d(X2hg, S9N\ SV) > dS (ha) (69)  The application of the ULRT to the simple fading example
discussed in Section 1V is illustrated in Fig. 14. The lifi€
represents the GLRT angf’' represents the decoder described
in IV. The line ST corresponds to the choice

U G
d(X2h27 S ) > d2 (h2) (70) 6*(’0) -1 \/ib/\/m (72)
since every’ € SY is in the decision area (of the GLRT de-
coder) ofin = 1. Since there is an area aroundvith finite Wheree*(v) is the optimal choice foé(v) in (52). Note that in
radius that was mapped to a surface with larger distance fréhe fading example* (v) does not depend anand the resulting
b?, there is a ball arounf? with radiusR, > dS (hg) thatis separating line is a straight line. The lisé" corresponds to a
strictly separated from the new separating surface. See Fig.different choice ok(v) such that

for illustration. As ford™) = X, hs
/2 2 _h2
N a 0< 6(‘!1) < €max = aibb
d(X1hg, S7) > d5 (he) (71) /242 — b2 + b

according to the construction (whei@v, S) = ming, s |[v' —
v||). For SV

(73)
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-~

Fig. 14. Construction of the ULRT for the fading example.

Note thatS" is not optimal but it does improve the GLRT. The
line S™, corresponding te(v) = ey, iS tangent to the circle

o
v‘

of radiusdS (h) = bh/+/2 arounda - (h, 0), Y h and, therefore, o = \\;f.:::::::::f‘:::
does not improve the GLRT. The optimal vale@) = €*(v) ’:::’5:5:‘\\\ { Fftffff":’:f::’::
be f d vi h h 0005 T e Y
can be found via a search over the parame(tey. < : SN %"3::::‘::‘
In the Appendix, we explicitly present the structure of thig =\ A ==;
[ :

ULRT for the hyperplane case. As previously mentioned, tr g
value ofe(w) is not necessarily unique and determining its o ==00's
timal value remains an open problem. Yet, we show in the A|5£,:_0'02
pendix that the optimal value efv) is a function of only the &
direction ofv and is independent of its magnitude. Thus, itturn  -oozs._ -
out that the new surface consists of straight lines that emetr
from the origin and together form a surface that is not a plane

Another way to formulate our decision rule is as follows. As
sume thaty is in the decision region of codeword = 1 for
the GLRT decoder. Then i§ (h1) > dS'(hi) andd§ (he) >
dS (hs) the decision rule is

Fig. 15. Comparison between the GLRT and the ULRTNoe= 3, K = 2,

M = 2.
il I
) G z L (74) .
||?/ —a || + 2e1(v)dy (ha) 4, Fig. 15 compares the performance of the GLRT and the ULRT

For the simulations we used a special case of this decoder, Wl{grrea specific code with two codewords, The error probability

€1(v) = £1(d (hy)—dS (hy)) /2% (hy ) ands, is a constant pa- o[rJa certain choice of the paramet%r vedtlos, hq) is given by
L P~ (ho, h1) for the ULRT and byP& (hg, hq) for the GLRT.
rameter of the decoder to be optimized so that the decoder wo : 7oe G

. . i~ - e graph shows the differené’ (hg, h1) — PE (ho, h1). We
uniformly improve the error probability. Similarly, assume thaj U & .

o . . See that for allhg, h1), P, (ho, h1) — PS5 (hg, h1) < 0 with
yis in the decision region of codeword = 2 for the GLRT strict inequality for somcéz hi1) and theerefore the improve
decoder. Then il (hy) < d$ (k1) andd$ (hs) < dS (hs) the nequanty 0, 51) and, ' proy
decision rule is ment is uniform. The values of the parametgrsé, were opti-

mized by a search over a grid. The values chaseg, = 0.2

Hy —p?® H + 265(v)dS (hg) ™, give optimal average performance (over the channel parameter
D z L (75) space) while still uniformly improving the performance of the
ly = a] e GLRT.

Again, for the simulations we used a special case of this de- i

coder, wheres (v) = (45 (ha) — dS (ha))/2dS (he) andés is D. Hyperplane Case With/ Codewords

a constant parameter of the decoder to be optimized so that th8uppose we hav&/ codewords, and each of the codewords
decoder would uniformly improve the error probability. represents a hyperplane. We assume that the codewords are
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Assume there is ne € S such that both (43) and (44) hold
(or both assumptions with inequality signs reversed). Therefore,
there are now only two possible cases for each S©.

In case |
df (h) < d5 (ha) (77)
df (hg) > d5 (hs). (78)
In case Il
df’ (h1) > d5 (h1) (79)
df (h2) < d5 (ha) (80)

whereh, andhy are defined in (37). Refer to case |. Any decoder
is defined by a separating surface. Any separating surface has to
pass at some point betweeft) andb®. Clearly, in case |, the
. . . separating surface has to pass thromgh order to maintain
. 16. K = .
'i'fg 2165. Comparison between the GLRT and the ULRTNOE= 3, & = 2, (29) for bothh, andhs. Therefore, we were not able to achieve
a smaller error probability fak; (andhs). Refer now to case |l.
. iderinoa(® i ' iect it o§¢ i
chosen such that all of the hyperplanes have the same mter%%ns'de”,ngl (1)(def|ned In (40)), we project it _OS at point
tion. The angle between hyperplanand hyperplang is ;. ;. v’, we defined" "’ to be the intersection of the difference vector

/ 2) wi : i
We can construct a vectbwith A components defined by ¥ — al? W('f? C1. We further definéss to be. the unique vector
such thad'’ = X;hs. Under our assumptions we have

b; = argmin {3; ;}, j=1---M. 76
ey Uk o A5 () > i (h) &)
The decoding is carried out in the following way. First, we dS (ha) < dS (hs). (82)
employ the GLRT decoder. Suppose the selected ward4iss.
We then look inb for j s.th; = i. If no suchj is found, Following the same arguments as in case |, we cannot map

the decision remains that of the GLRT. Otherwise, for sjich ¢’ to a different point and, therefore, cannot improve the error
P.(j — ilh) > P.(j — k|h),V h, k # i, whereP.(j — k|h) probability of h; (andhs) since any separating surface main-
denotes the probability that the decoded codewora is= + taining (29) has to pass through Since the above argument is
while the transmitted one isz = j and the channel coeffi- valid for anyh, (andh;) the proof is complete.

cients vector ih. Therefore,P(error|j, h) (the probability of

error when the transmitted wordjsnd the channel coefficients VI. ULRT FOR THE GENERAL ISI CASE

vector ish) is of the exponential order df. (j — i|h). Now if As in the hyperplane case described in Section V, the con-
we carry out the procedure in the previous subsection for Codgrction of the ULRT for the general case is based on the GLRT
words: and; we would uniformly improve the error probability, gecoder. Therefore, we begin this section by investigating the

which follows from the same arguments. . GLRT surface for the general case, in which the codewords span
For the simulations we have used a simplified version of thghbspaceé*m. m = 1, 2 given in (19). Then, we present a de-
algorithm. The codewords were chosen so that the hyperpla@gging procedure, similar to that presented in Section V, with an

they represent have a common intersection. We have calculateflitional assumption, made for simplicity, that the codewords
the GLRT metrics for all the codewords. We then selected tEBan orthogonal subspaces.

two codewords with the two minimal metrics and performed T separating surface of the GLRIC, is quadratic in the
the simplified version of the ULRT from Section V-C for thesegeneral case and given by (22). Define the matritgs= 1, 2
two codewords. Thus, existing GLRT decoders could be incor- '
porated into the ULRT decoders. Fig. 16 compares the perfor- A,, = I — X,, (XL X,,,)"* XL, m=1,2. (83)
mance of the GLRT and the ULRT for a specific code with ) . . -
M = 5 codewords. We see that the improvement is uniforf{©t€ that4,, is symmetric and idempotentl,, = A,
The parameters, andé, in (74) and (75), respectively, were“imAm = An. Any vectorry, € Gy, form = 1orm = 2
optimized for each pair of codewords separately, by a seat%?’lt'Sf'es

over a grid. Ao :(I_Xm(XZ;Xm)_IX;L)Tm
— T —1+vT

E. Converse Theorem = = Xon (X X)) ™" X)X
=X,nh—-X,,h=0, m=1, 2. (84)

We prove now that the existence ofc S such that both
(43) and (44) hold (or both assumptions with inequality signherefore, the subspacés,, m = 1, 2 can also be expressed
reversed) is also a necessary condition for the existence ofq
decoder that uniformly improves the GLRT decoder (for which
(29) and (30) hold). Crm = {Tm: Am = 0}, m=1,2. (85)
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The separating surface is given by the trivial case where is in the intersection of’; andCs,. We
¢ _ (.7 B thus conclude that is regular.
S ={vv’ (A — Ay)v = 0} (86)  Right-multiplying both sides of (91) by, gives
Let a be a point onCl._We analyze uncéer What_ conditions Ara = AT + M(As — Ap)Jv
|lv — a|| represents the distance @from S<. A similar anal-

ysis can be performed fére C,. Consider the following (non- 0=A1v+ Ay (42 — Ao (92)

convex) constrained optimization problem: sincea € C;. In order for (92) to holdA;v andA; (A — A )v
min{||a — w||: wT (A5 — Ay)w = 0. (87) must be linearly dependent andmust equal

The constraint assures that the solution liesSén The opti- |A1(A2 — A1)v||

mization problem can be relaxed to the following: where)\ was chosen to be nonnegative according to (90). For a

min{[ja — w||*: wT (4, — A})w < 0}. (88) certainv, if AjvandA;(A4; — Aq)v are not linearly(?) depen-
w dent, then the normal t§¢ atw will not intersectC; . Likewise,
The two problems are equivalent because the condititfnd,v andA2(A; — A;)v are not linearly(?) dependent, then
wT(A; — Aj)w < 0 defines the decision region @f = 2. the normal toS“ atw will not intersectCs,. Note that for the
Therefore, the minimal distance of a point 6f to the region orthogonal case, i.e4; A, = 0 we haved;(A; — A;) = — A4,

wT (A3 — Aj)w < 0 is always achieved on the separatingnd A»(A; — Az) = —A,. Thus, for the orthogonal case the
surface, wherev” (A, — A;)w = 0. In what follows we state normal toS¢ at anyw intersects boti’; andCs,. Returning to
necessary conditions on the solution of (88). the general case, the relation betweeanda € C; is given by
Kuhn-Tucker conditions for a nonconvex constrained opti- | A1v||
izati =|I+—F————(A3— A 4
mization problem a [ + A1 (As — AL (A2 1)] v (94)
n}li]n{f(w): g(w) <0, weR"} (89) and s
with f: R" — R, g: R" — R*. Denotel (w) = {i: g;(w) = 0} la—vll = [|[A1(Ay — Ar)v|| 1042 = Av)ol]- (%5)
e.,_the set of active constraints at of the inequality con- Analogously forb € Cs, if Ay andAs(A; — Ay )o are linearly
straints. - l(?) dependent
Let w* be a local (global) minimum for (89). Assume thal
fori € I(w*), {Vg;(w*)} are linearly independent, wheke - {I || Azv]| A A 9%
denotes the gradient operator (a point satisfying this condition + [|[A2(A1 — A2)v|| (41 2)| v (96)

is called regular). Then there exists a unique Lagrange Vattory g that giveru (or b), there can be more than one solution for
satisfying v. Returning to the original (equivalent) optimization problem
k in (87) we can find now a sufficient and necessary condition on
L(w*, \*) = Vf(w") + Z AV (w*) =0, for global minimum. Considey’ = v+d. Assumey’ maintains
i=1 the constraint of (87)

A7 >0,14 sk, AP =0, Vi g I(wx). (90) 0T (Ay — AW = 0+ d)T(As— A)w+d) =0 (97)
For the optimization problem in (88% = 1. The

Kuhn-Tucker conditions yield or
v (Ay — Av+dT (A — A)w + 07 (Ay — Ay)d

Llwv,\)=—-a+v+ MNAy —A1)v =0 -
+d" (A3 — A)d=0 (98)

a=[]+AA2— A (91)

L . and, sincav” (4, — A;)v = 0, it follows that
where the Lagrange multiplier is nonnegative. ! (42 = AvJv ! W

The gradient of the surfaae” (4, — A;)w = 0 atv equals  d* (A, — Ay)v + 07 (Ay — A1)d+d” (A3 — A1)d = 0. (99)
(Ay — Aq)v. In other words, the direction of the normal to thefD . 9 . . .
surfacew? (A, — A;)w = 0 atw coincides with the direction of D€MNNG f(2) = |l ,__z” » we derive the following relation
(Ay— Aq)v. Therefore, condition (91) is equivalent to requmné) tweenf(v) and f(v'):
the vector(a — v) to be perpendicular to the separating surfacef(v') = (a — v')"(a — v')

S%. In the general case, there could be several choices of per- (@a-v—d)T(a-v—d
pendicularv, each may be of different distance. The minimum T T T
of those projections is the global minimum. =(a-v)(a-v)-d (a-v)—(a—-v)'d+dd

We show now that each is a regular solution of (88). For = f(v) —2)Md" (A5 — Ay)v + ||d))?
ahsirllglﬁ cqrnstliaint, th; 'requirgment of ::near ir!dependehncehof =f(v) + )\dT(AQ A))d+ ||d)|)?
the Kuhn—Tucker condition reduces to the requirement that the _ 7y
gradient vector is not zero. In our case, foto be regular we =)+ d [T+ (4> = A)ld (100)
have to verify that As— A, )v #0. Assume thafA,—A;)v=0. where the forth equality follows from (91) and the fifth follows
Then from (91) it follows thav = a, which can occur only in from (99).
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We have derived the following relation: with equality andC'(v) is always a semipositive matrix. Thus,
I|4,]| for any v, we denote the intersection of the normalS6 at

f') = flv)+d" [T+ (A — Ay)|d. v with C; by a®@. Kuhn—Tucker conditions assure that global

141(A2 = Ax)o] (101) minimum for||a®) — v|| is achieved. Likewise, we denote the
intersection of the normal t6¢ atw with C, by b?,
Therefore, forv satisfying (91) (i.e., the vectar — v is per-  Projectinga®™ = X h; on S¢, there may be infinite solu-
pendicular to the separating surface), a necessary and sufficténisw, such thatla® — v|| is minimal. We denote by’ the set
condition for global minimum is of optimal solutions, given by
C(v) =1+ A(Az — Ay) V:{vESG:v—a(l)J_SG}. (110)
A1l
= - - . :
I+ |41 (A — Ap)o|| (Ao =A) =0 (A02) pocachye Vv, auniqueb®® = X,hs can be found using (96).
i 2
where - denotes semi-positive definiteness. If we further ré/e denote this set big )
quire B = {p®:vev,o-4® 159 1)
Clv) =T+ A4 _AAl) A sufficient and necessary condition for the existence of a
=TI+ & (Ay — A)) =0 (103) decoder that improves the error probability tgrand does not
[A1(A2 = Ar)v|| worsen the error probability for any other channel parameters

where - denotes positive definiteness, theris also unique. vector, is that anyig, such thatX,hy € B2, satisfies
Either condition (102) or condition (103) ensure tijat— al|

G G
represents the distance @from S¢. di (1) <d3 (h1) (112)
We can de_fine a matri@’(_v), analogous t@'(v), forb € Cs dS (hg) < dS (hg) (113)
and require its positive definiteness in order to engfare- b|| . o _ .
represents the distance lofrom S¢ where df (h) and d5 (h) were defined in (23) and (24), re-
, spectively. Analogous conditions can be formed for the case
C'(v) =1+ XA — A») d$ (h1) > dS(ha).
| Azv|| (Ay — A3) = 0 (104) We describe now the decoding procedure. Assume that the

=+ o .
* |A2(A1 — A2)v|| observed vectay is in the regionn = 2 of the GLRT decoder.

Verifying the positive definiteness of the matric@év) and 1€ VEctor oy may have more than one projection §fi. De-
C’(v) may be complex, as it should be repeated for differefiPte this set by,
choices ofv. To reduce the complexity, the eigenvalue€gb) V,={ve SG v —y L S} (114)
can be related to those of the matrdx= A, — A;, which are
independent ob and so can be calculated off-line. SpecificallyFor a specifiw € V,, the normal toS“ intersectsCy, Cs at
in order for (102) to hold, every eigenvalyeof C(v) must a®, b® according to (94) and (96), respectively. Since both
satisfyu > 0. Now, for every eigenvalug of C(v) X, and X, are full rank we can find unique ISI parameters

h, andh, such thata® = X,h; andb® = X,hs. Then,

det[C(v) — ul] = 0. (105) it conditions (112) and (113) hold, andv) is given, a new
SubstitutingC(v), yields mappingu can be found according to (52). If for soraec V,,
the observationy is on the line betweea™ andu we decode
det[I+ )\(AQ — Al) — /LI] =0. (106) m = 1, otherwisemn, = 2.
Thus,
VIl. ENERGY WEIGHTED DECODER
det[(1 — p)I + A(A2 — 41)] =0 (107) _ ) )
or For two hypotheseX/;, Hs, i.e., two codewords") andz(?
p—1 defined in (6) the GLRT decoding rule in (15) can be reformu-
det - I+ (A2 — Ay)| =0. (108) lated as
1).
It can be observed from (108) that= (1 — 1)/ is an eigen- pepbe (]2 0) 4,
value of A, — A;. Since we have requirgd> 0, 6 has to satisfy SUp s (y |z(2). 0) z L (115)
8 > —1/A. In other wordsyp is a global minimum iff the min- 0€O ' Ho

imal eigenval s — Ay, Smin Satisfi . .
aleigenvalue ot 1+ Omin SAUISHiES A new decoder that improves the average error probability over

b > ||A1(Az— Au)v| (109) 2l the possible unknown fading coefficients is given by
| [[Avo]] B sup po (y]2D; 6) .
We now determine the necessary conditions for a decoder that pco S 5 (116)
uniformly improves the GLRT, and present explicitly such a de- suppy (y|2); 60) 3,
feo -

coder. For simplicity, we assume in what follows an orthogonal
case, i.e.A; A; = 0. It can be easily shown that in this orthogwherey has yet to be optimized in order to minimize the average
onal case,,;, = —1. Therefore, condition (109) is satisfiederror probability. The motivation for the new decoding rule is the
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0.18 T T T T T T T T T
—  GLRT

simple fading case. Using the notations in Section IV, the GLF
decoding rule was

016F |~ Average improved decoder i
-=-=+-  Uniform improved decoder s
Hi
Yo 014} E
Iyol > 1. (117)
|y1] Ho |

0.12

The new decoding rule suggested, which reduces the expon

tial order of the error probability, is given by o’
0.08

0.1

lyol 5 lal (118)
lyal 3, 18]

Therefore, a possible choice for the parametean be a func- A
tion of the ratio between the energies of the codewords. Int oo’

one-dimensional case,is given by the square root of this ratio.

For ISI channels, we selegtas a certain power of the ratio of 8z oos oo oo o1 o1z o1 o om0z oz
the energies. Denote the energies of the transmitted sigHals %n

andz(® asF; andE,, respectively. Then

Fig. 17. Average performand€ = 3, K =2, M = 2.

2
b= <1 @
2
.= o) 20
0.3+
and the decoding rule is given by —~ 029
K=y
1. ¢ o014
sup pp (Y |25 S
B gy
Sup pe (y|a:<2); 6) 7—2 E2 ;,.—on\.w”
eO - O
o2,
for some0 < 7 < 1. Forn = 0 itis the GLRT decoder. 2%
According to (16), for Gaussian ISI channels the decodir ..
1

rule is given by

IIlin ||y - X2h||2 Hi E n
h > <—1> . (122)
Ho Es

min [ly — X1A]2

In Fig. 17, we compare the average performance (over mes-
sages and channel coefficients) of the GLRT decoder, the ULF!{?E':IBZ‘
and the energy weighted decoder (EWD) for a specific code with
two codewords. The code we used for the simulation is

Comparison between the GLRT and the EWD= 3, K = 2,

and, therefore, the improvement is not uniform. The comparison

10 6 0 between the GLRT and the ULRT in the parameter space was
Xi1=12 1}, Xo=|T7 6. (123) already given above in Fig. 15.
0 2 0o 7

The value ofy was optimized by a search over a grid. The op- VIIl. SUMMARY AND_ FURTHER RESEARCH

timal value that minimizes the average error probability is aboutWe have introduced in this work two classes of alternative
n = 0.3. new decoders for unknown linear channels that improve the
Fig. 18 compares the performance of the GLRT and teLRT under different criteria. Most of our work is dedicated to
EWD. The error probability for a certain choice of parametdfe ULRT that uniformly improves the error probability (actu-
vector (ho, hi1) is given by PN (hg, h1) for the EWD and by ally the exponential order of the error probability) of the GLRT
PG (hg, hy) for the GLRT. The graph shows the differencgd€coder. For this decoder we have distinguished bgtween two
PN(ho, h1) — PS(ho, h1) of the error probability for each ca}ses:the hyperplane case and the general case, which are deter-
cﬁoice /Of(ho. hl)e. We see that while for som@o, h1) mined byK’, the number of channel parameters andhe block
’ ’ length. The hyperplane case turned out to be simpler and we
PN(hg, h1) = PS(ho, h1) < 0 found closed-form equations for implementing the algorithm.
’ ' The general case turned out to be more complicated since it in-
for others volved a nonconvex optimization problem. We have explicitly
presented a decoder only for the case where the subspaces as-
PN (hg, hy) — PS(hg, h1) > 0 sociated with the codewords are orthogonal. The fact that one
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can uniformly improve the GLRT is important since much rethe competitive min-max criterioproposed in [12]. This crite-
search was directed to find theoretical justification to the GLRfTon minimizes the worst ratio between the error probability of
decoder, and to develop implementation algorithms for it. Othie proposed decoder and the error probability of the optimal
result shows that the lack of theoretical justification is not coirML rule, raised to a certain powér< ¢ < 1. Itis interesting to
cidental. Yet, from the practical viewpoint, at least for the hysee to what extent the new decoder proposed here satisfies this
perplane case, the complexity of the ULRT is not significantlgriterion.
higher than that of the GLRT and can incorporate existing GLRT A criterion for an optimal decision rule under channel uncer-
decoders. tainty is not well defined. A certain decoder is superior to an-

Decoders of the second new class improve the average (o9#ter decoder under any criterion only if it uniformly improves
channel parameters) error probability. The resulting EWD réae error probability. In this work, we have shown that the GLRT
tates the separating surface of the GLRT in the direction tsf not an admissible decision rule, as it can be uniformly im-
the less energetic codeword. Thus, while the separating surf@éeved. This work might be a step toward a more general theory
maintains the same characteristics of the GLRT (e.g., hypéesigned to determine whether a certain decision rule is admis-
plane, quadratic surface) it improves the exponential order $iple or not.
the average error probability. In this respect, we note that whileThe problem oncoderdesign for unknown linear channels
in many cases codewords have the same energy, there are cé@@de investigated more closely in order to achieve a com-
where it is actually advantageous to use different energies. Pgte view of robust communication systems for unknown chan-
example, in [19] it was shown that quadrature amplitude moduels. A general discussion of robust communication for various
lation (QAM), with codewords that are not necessarily equal #lasses of unknown channels can be found in [10]. Clearly, the
energy, has superior performance over the equal energy ph@esign of encoders for unknown channels could take into ac-
shift keying (PSK) modulation even for noncoherent receptidipunt the results here and other related results on universal de-
employing the GLRT decoder. A simplified version of the Ewoding.
was introduced in [14], where it was implemented for a mul-
tiple-antenna system employing QAM. APPENDIX

For further research, one direction would be the implemen- ULRT STRUCTURE FOR THEHYPERPLANE CASE

tation of the ULRT for practical systems. This may require an |, this appendix, we will look more closely at the structure
algorithm for determining the parametethat may involve it- of the decoder wheri,,, m = 1, 2 in (19) represent hyper-

erative or recursive modifications of an initial value. For th lanes as in (32). We provide a geometrical representation of

general case, the implementation may require an algorithm fe problem (i.e., the structure of the separating surface of the

solving the resulting nonconvex optimization problem. Also, T . .
explicit analysis in the general case, without the assumption ?I%erT decoder). This will be the basis for the geometrical struc-
ttlél’& of the ULRT.

the codewords subspaces are orthogonal, should be comple . . . .
For practical systems, one should also find efficient implemen-ASf;ume thz_:\p |n_(35) IS a unit vector. Th_e d'Sta”Cd;g(h)
tation for the case of largdl codewords. andds (h) defined in (23) and (24), respectively, are given by

Actually, the case of largd/, especially the case whend le(h) = |pTX1h|7 dQG(h) = |pTX2h|_ (124)
grows exponentially with the block lengif, i.e., M = 2V E for . .
some rateR, is interesting and requires further theoretical anal- Denote byL; the intersection ot’; andC’
ysis. Specifically, an interesting question is whether the ULRT _
can improve the error exponent attained by the GLRT. In this Li=0 ﬂ G (125)
respect, it was shown [20] that GLRT decoders can achieve thikich is a subspace of dimensidh— 2 = K — 1. From (32),
rate attainable by an optimal ML decoder, yet the GLRT exp¢35), and (36) it follows that
nential error performance may be improved. G .

An additional direction for research is modifying the de- =5 ﬂ01 =5 ﬂCZ" (126)

coders to other channel models. Linear systems can, in generaonsider the hyperplang; (the following procedure is ap-

be classified into four categories: time-invariant flat fadingplicable toC, as well). The intersection af; with S€ is L,
time-invariant frequency selective fading, time-variant flat,q given by

fading, and time-variant frequency fading. The first category
is covered by the simple fading example, while our work here Ly = {X1h: p" X1h =0, h € RF}. (127)
focused mainly on the second category. A natural generalizatign

of the GLRT decoder to time-variant channels would modi egl;llustrattlﬁntf_od;: 3, K :tZ in Fig. 19]; di &L |
the estimation of the channel coefficients involved in the serve that in the parameter space (of dimen&igiL,, is

algorithm. Instead of LS estimation it could involve weighte{‘jl hyperplane (O_f dimensiaki —1). The hyperpland., divides
least squares (WLS) algorithm, where the weights are chogeh INt0 two regions

to account for the changes in the channel. A new decoding L ={X1h: p" X1h > 0, h € R} (128)
algorithm that improves the performance of this decoder can ’ i
be developed analogously to the improved decoder we have LT ={X:1h: p" X1h < 0, h € RX}. (129)

developed in this work for time invariant channels. We can also construct th — 1-dimensional hyperplans,
Another subject for further research involves performan(E)eeéined by

bounds, and especially analysis of the error exponent achieve )
by the decoders. The decoders might be analyzed according to Ly = {X1h: p" Xoh = 0, h € R")} (130)
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Cl
- +
LI LI LI
Fig. 19. [lllustration forN = 3, K = 2.
C
- + 1
LI ! L2
L, L*,L}
L;,L; L
+ =
LI ) LZ
Fig. 20. lllustration forN' = 3, K’ = 2 (continued).

which dividesC] into L and L; (defined analogously té;
andLj). See Fig. 20 for illustration. The hyperplahe repre-
sents all the point&; h € C; such thatX,h € Ly (dS(h) = 0,
see definition in (24)). The intersection 6f and L, is a sub-
space given by

Li( L2 = {X1h: p" X1h =0, p" Xoh = 0, h € R}
(131)
which is of dimensionk — 2.
Construct thek — 1-dimensional hyperplands; andL, de-
fined by

L3 = {thi pTth —pTXgh = 07 h S §RK}
Ly ={X1h: p" X1h + p" Xoh =0, h € RE}.

(132)
(133)

It follows from (124) that for anyX 1h € L3 or X1h € Ly,
df (h) = d ().
Define the setD

D=1Ls()Ls (134)

which is of dimensionk — 2. For anyX h € D, p" X:h =0
andp” X,h = 0. Therefore,

D:L3ﬂL4:L1ﬂL2:L1ﬂL2ﬂL3ﬂL4 (135)
;

D= {thi pTth +pTX2h = 07
p" X1h —p" Xoh =0, h € RF}
={X1h:p" X1h =0, p" Xoh =0, h € R*}.

(o]

(136)
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Fig. 21. lllustration forN = 3, K" = 2 (continued).

= dS,(h)>dS,(h)
11 d9% (h)<d®,(h)

Fig. 22. lllustration forN = 3, K = 2 (continued).

The hyperplanesg;, Lo, L3, L4 divideC; into eight regions
(see Fig. 21)4;, ¢ = 1, ..., 8. This hyperpland.; passes in
the regionsL N L3, L7 () L; . The hyperplane divide§’;,
into two regions:L3 (wherep” X,1h — p" Xoh > 0) and L3
(wherep” X;1h — p? Xoh < 0). Clearly,L{ N L, C L3 and
L; N L3 C Ly . This way the regiong;+ and Lz — were de-
termined in Fig. 22. Similarly.] and L were determined.

We need to determine for each of these eight regions whether
d§(h) > dS(h),Yh € A; ord§(h) < dS(h),Vh € A;. Re-
gion A, for example, is given by.; N L3 N L3 N L] . There-
fore, |p? X1h| > |p? X2h| and it follows thatd; (k) > da(h),
Vh € A,. The same procedure can be carried out for the rest
of the regions. We conclude th@f is divided into four regions
where in two of themi§ (k) > d$(h) and in the other two
d§ (k) > dS (h). The hyperplane&s, L, divide C; into these
four regions; see Fig. 22.

We project bothl.3 and L, on the GLRT separating surface
S%. The projections are the hyperplangse S andL, € S¢
that divideS¢ into four regions. The subspacg$§ and L/, are
both of dimensionk — 1 and, therefore, are hyperplanessifi
(K -dimensional). Their intersection I3 (see (134)). This is so
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0 O @ L
dS (h,)<d%,(h,) dC (h)<d%,(h,) dO,(h,)>d%,(h)) dC (h)>dC,(h,)
dC (h,)>d%,(h,) dC (h,)<d%,(h,) dC(h,)<d%,(h,) dC (h,)>dC(h,)

4% (,)<d%(h,)

Fig. 23. lllustration forN = 3, K = 2 (continued).

since, as we recall) C L; and, thereforeD c S©. Thus, the
projection of D on S¢ is D itself and sinceD = L; N L, we
conclude thatD C Lj N L). The hyperplane&’ and L), can
intersect at most on& —2-dimensional subspace and therefore,

Fig. 24. lllustration forN = 3, K = 2 (continued).

= B &
7/ /
D= Lyn Ly (137) S (h))<d%h,) d° (h)<d%h,) d°(h)>d%,(h,) d (h)>dO(h,)
See illustration fotV = 3, K = 2 in Fig. 23. dS,(h,)>d%(h,) dS (h)<dC,(h,) d° (hy)<dS,(h,) d° (h,)>dS(h,)

At any pointy € S¢ we can construct a normal . The
normal intersect§’; at X;h; for someh, andC, at X,hq for
somehy. Consider regior?; (or R3) in Fig. 23. If we construct
a normal toS“ on any pointv € R; the normal intersects
C, at X 1hy for someh; whered;(h1) < da(hy). Consider
regionR; (or Ry). If we construct a normal t6“ on any point
v € R, the normal intersectS; at X;h; for someh,; where
dl(hl) > dQ(hl)

The entire procedure above is repeatedder We construct
on Cy the hyperplaned?,, M>, M3, and M,. We project also
M and M, on S¢; see illustration forN = 3, K = 2 in
Fig. 24. The regions formed o$i” are denoted by;. We as-
sumed thal.;, L), M}, andM} do not overlap, since otherwise
the GLRT cannot be uniformly improved as shown by the con-
verse theorem.

Some regions (in our example; andG5) maintain (43) and Fig. 25.
(44) and some regions (in our examlg and G7) maintain
these assumptions with both inequality signs reversed. Define )
a |"egi0nc;’(11 C Gl C SG and of finite anglea from the the GLRT. We will also show th&t('v) does not depend on the

boundaries of: ; see Fig. 25 for illustration. Similarly, define Magnitude of, but only on its direction. Thus, vectors &

lllustration forN' = 3, K = 2 (continued).

G, ..., Gg. We will show that any poinb € G, G2 can be with the same direction (linearly dependent) have the sdime
to gionsG} € C; such thatG; is the projection ofG} on S¢.
Similarly, constructi? € Cs. Consider, for examplé;; where

u=(1-¢€))v+ev)X1h (138) d§'(h1) > dS(h1), d§(ha) > dS(h2). In regionG1, since

o _ ~d§(h) > dS(h), SY is strictly outside a balB; (h) of radius
wheree(v) > 0 and the projection of;h; on 5% isv. Simi- 4, (k) aroundX,h (see (53)). Thereforay is also strictly out-
larly, any pointy € G5, Gi7 can be mapped to a new powtn  siges3, (h) and we can find(v) so thatu is also strictly outside
the new separating surface according to Bi(h).

u= (1 e())v+ e(v) Xohs (139) As for the other regions af (_in our examplgG%, Y G})
we need to show that we can firfy) so thatu is strictly out-
such that the new separating surface maintains (29) and (8@e B, (h) of radiusd; (h) to aroundXh (see (60)). Denote
and, therefore, uniformly improves the GLRT decoder. The evéy v’ the projection of somé(;h on S¢ (see Fig. 26). Denote
regions of the new separating surface will remain the same asligra’ the angle between andv’, cos(a’) = v -v'/||v]||]v’||.
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] i | ]
dS (h,)<d,(h,) dC (h)<dS,(h) dC (h)>d%,(h,) d° (h,)>dC,(h,)
dC (h,)>d%,(h,) dC (h,)<d%,(h,) dC (h,)<dC(h,) d(h)>dS,(h,)

Fig. 26.

lllustration forN' = 3, K = 2 (continued).

According to constructiony’ > «. The distance betweeki, h
andv’ is d¢ (h). The distance betweari andv is

lo = o'|| = ([o]]* + [[']]* = 20 - 0) /2

(cosine law). It follows that ifx and ||v|| are finite then so is
|lv — 2'||. Denote byd’ the distance betweeli; h andv. Ac-

(1]
cording to Pythagoras
d = (dS(h)% + |lv = v'))2)"/* > d% (k). 1s0) @
Thereforew is strictly outside the balB; (h) of radiusd§ (h)
aroundX h (see (60)) and we can findv) so thatuis also out- 3]

sideB; (h). In other words, according to construction, we know

that the union of balls of radiusiin{d{ (h), dS'(h)} around  [4]
X1h, ¥V h € R* is not tangent t@/ . Therefore, for any € G§
we can find a suitable(v) s.t.u is outside the above union of 5]
balls.

Define a subset afi? C C,, denoted by?f’ * whereXsh €
Gf’“ if the projection ofX,h on S¢ is within G¢. We want [6]
to show that error probability will be improved for arys.t.
X,h € G2, Sincedy(h) > dy(h) for any h in this region,  [7]
the union of balls of radiusin{d$ (h), d5(h)} aroundXyh
is tangent ta7¢. Therefore, the mapping of the regiGif (in [8]

the direction ofC,) will improve the error probability for this

region. o]
We turn now to show that the required value:(f) depends

only on the direction ob and not on its magnitude. Suppose that[10]

v was mapped ta according to (138) (in some of the regions

we know that we can find suaf). We conclude that maintains  [11]

| X1h — u|| > min{|p” Xoh|, [p¥ Xoh|},  Vh. (141)

(12]
We want to show that the vectew, ¢ > 0 can be mapped tox.

See Fig. 27 for a cross section for the cdée-= 3 and K = 2.
Substituteh /¢ instead ofh in (141)

(23]

[14]

|X1h/t —ul| > min{|pT Xsh/t], |pT Xsh/t},  Vh.

(142)

Fig. 27.
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X,h tX;h

lllustration forN = 3, K’ = 2 (continued).

Multiplying both sides byt > 0 results in
1X1h — tul| > min{|p” X2h|, [p” Xh|},

Vh (143)

which is what we wanted to show. As a result, the relative error
probability improvement does not deteriorate for channel pa-
rameters with larger magnitude.
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